P₄ Activation by Main Group Elements and Compounds

Manfred Scheer,* Gábor Balázs, and Andreas Seitz

Institut für Anorganische Chemie, Universität Regensburg, 93043 Regensburg, Germany

Received January 11, 2010

Contents

	1. Introduction	4236
	2. The Stability of P ₄ Phosphorus with Respect to Its Allotropes and Neutral Polyphosphorus Species	4237
	2.1. Allotropic Modifications of Phosphorus	4237
	2.2. Stability of Neutral Polyphosphorus Species	4238
	3. General Trends of P ₄ Phosphorus Activation	4239
	3.1. General Remarks	4239
	3.2. Degradation of P_4 Phosphorus by Nucleophiles under Maintenance of P_n Structural Moieties	4241
	 Activation and Degradation of P₄ Phosphorus by Main Group Elements and Compounds 	4243
	4.1. Activation of P ₄ Phosphorus by Group 1 and 2 Elements and Compounds	4243
	4.2. Activation of P ₄ Phosphorus by Group 13 Element Compounds	4245
	4.3. Activation and Degradation of P ₄ Phosphorus by Group 14 Element Compounds	4246
	4.4. Activation and Degradation of P ₄ Phosphorus by Group 15 Element Compounds	4250
	4.5. Activation and Degradation of P ₄ Phosphorus by Group 16 and 17 Element Compounds	4251
1	5. Abbreviations	4252
	6. Acknowledgments	4253
	7. References	4253

1. Introduction

The activation of white phosphorus by main group elements and compounds is an established field of chemistry which had its initial high impact back in the 1970s and 1980s, when numerous groups worldwide used P₄ as starting material to generate organophosphorus compounds. Its use is based on the availability of white phosphorus as a first industrial product after transformation from phosphate minerals and on a great industrial relevance for subsequent inorganic and organophosphorus products.¹ Here lies the key role of white phosphorus, since most industrial processes in the past and in the present are based on its further chlorination or oxychlorination to PCl₃, PCl₅, and POCl₃. Using HCl or salt elimination reactions, these compounds react to produce subsequent products such as phosphoric and phosphonic acids and esters as well as organophosphorus derivatives of tri- and pentavalent phosphorus. To avoid these necessary steps needed so far and to achieve the criteria of more sustainable and environmentally friendly processes, extreme efforts have been directed to transfer white phos-

* To whom correspondence should be addressed. Telephone: +49-941-943-4441. Fax: +49-941-943-4439. E-mail: manfred.scheer@ chemie.uni-regensburg.de.

Manfred Scheer studied chemistry at the University of Halle-Wittenberg (Germany). Here he received his Diploma in 1980 and his Dr. rer. nat. degree in 1983, both in organometallic tin(II) chemistry (with Alfred Tzschach and Klaus Jurkschat). After postdoctoral research on solid state chemistry at the Institute of Inorganic Chemistry of the Russian Academy of Sciences in Novosibirsk and on main group centered multinuclear metalpromoted catalysis at the Max-Planck-Institute für Kohlenforschung in Mülheim/Ruhr with Gerhard Wilke, he finished his habilitation in the field of phosphorus chemistry in Halle/S. in 1992. Promoted by a Feodor Lynen Fellowship of the Alexander von Humboldt Foundation, he researched as guest professor with Malcolm Chisholm at Indiana University, Bloomington, IN, in 1992/93. In 1993 he returned to Germany at the Institute of Inorganic Chemistry of Karlsruhe as a Heisenberg Fellow of the Deutsche Forschungsgemeinschaft, where he was appointed as Associated Professor of Chemistry (C3) in 1996. In 2004 he accepted the chair of Inorganic Chemistry at the University of Regensburg (Germany). His research interests include the synthesis and investigation of reactivity patterns of unsubstituted main group element ligands with a focus on the heavier group 15 elements as well as the stabilization and reactivity of main group compounds consisting of combinations of different elements. The chemistry of highly reactive molecules such as P4, As4, or compounds containing transition metal group 15 element multiple bonds is of further interest.

phorus directly to the desired industrial inorganic and organic phosphorus containing products. These have been the goals of intensive industrial as well as academic research in the mentioned period of the 1970s and 1980s by using main group elements and compounds to transfer P₄ directly to useful products. However, the low selectivity and the problems in the workup of the reaction mixtures usually obtained make these new processes noncompetitive with established industrial procedures. Moreover, the discovery in the late 1970s and mid-1980s that transition metal complexes can coordinate,² activate,³ and transform⁴ white phosphorus led to the possibility of transition metal mediated activation and transformation of white phosphorus. This period of intensive research of P₄ activation by transition metal complexes started in the mid-1980s and is still being developed.⁵ Here, the main steps of the gradual activation of P₄ phosphorus are, in principle, understood.⁶ Although the transition metal-mediated activation of white phosphorus

Gábor Balázs was born in Branistea, Romania, in 1975. After undergraduate studies at the Babes-Bolyai University (Cluj-Napoca, Romania), he received his Ph.D. in 2002 under the supervision of Prof. H. J. Breunig at the University of Bremen (Germany). From March 2003 to October 2005, he was a postdoctoral associate of Prof. M. Scheer in Karlsruhe and then Regensburg (Germany). In October 2005, he joined Professors D. M. P. Mingos and J. C. Green at Oxford University for a postdoctoral stay as a scholar of the Alexander von Humboldt foundation. This was followed by a postdoctoral stay in the group of Prof. M. Driess in Berlin (Germany). In April 2008, he joined Prof. M. Scheer's group in Regensburg. His research interests include the field of organometallic chemistry of heavier group 15 elements.

Andreas Seitz was born in Landshut, Germany, in 1989. In October 2008 he started his undergraduate studies in chemistry at the University Regensburg (Germany), where he joined Prof. Dr. M. Scheer's chair as a student assistant in October 2009.

has achieved impressive progress over the years, which is documented in two actual review articles in this series,⁷ the most unsolved step in this area is the combination of activated transition metal phosphorus species with organic substrates to yield organophosphorus products. Moreover, the target of *catalytic* functionalization of P₄ phosphorus is still far from being solved. Parallel to the ongoing research of transition metal-mediated activation of P4 phosphorus during the last five years, a renaissance of activation and degradation of white phosphorus by main group compounds is noticed.⁸ These activities are dominated by metal-free P₄ degradation in the Bertrand group by NHC and CAAC reagents and can be seen in line with already earlier reported activation of P₄ phosphorus by carbene analogues of group 13 and heavier group 14 elements. Also, cationic phosphonium compounds, which are also carbene-like species, have been successfully applied to insert into P-P bonds of white phosphorus (details are discussed in section 4). According to these decisive developments, this review intends to provide a comprehensive view of the current stage of activation and degradation of white phosphorus by main group elements and compounds. Yet, in the face of the large number of early contributions in this area reviewed over the years by some articles on organophosphorus compounds derived from P₄,⁹ this article is dedicated to the development of the field of P_n rich compounds (n > 4) and also to the recent findings of P₄ activation and degradation. By trying to draw general lines and trends, the project is faced with the difficulty of having incomplete experimental proofs and understanding of the single steps of the P₄ activation by main group element compounds. In view of large amounts of individual results and the lack of detailed mechanistic knowledge, this review provides insight into the current stage of research. Furthermore, we want to stimulate the inorganic, organic, catalytic, and material science oriented chemical community to draw much more attention to the field of P₄ activation by main group compounds to one day accomplish direct P4 based modern chemical manufacturing.

2. The Stability of P₄ Phosphorus with Respect to Its Allotropes and Neutral Polyphosphorus Species

2.1. Allotropic Modifications of Phosphorus

Three basic allotropic modifications of elemental phosphorus exist in general chemistry textbooks: white, red, and black phosphorus. The structure of the thermodynamically most stable form of black phosphorus is known as well as the one of white tetrahedral P₄ phosphorus.¹⁰ At ambient temperature and pressure, black phosphorus reveals an orthorhombic structure,¹¹ whereas, by increasing pressure, the structure changes first into a rhombohedral form and then into a cubic form.¹² At room temperature, white phosphorus is a waxy material which is difficult to obtain as single crystals. In spite of this, Simon et al. elucidated the β -P₄^{13a,b} and γ -P₄^{13c} modification by single crystal X-ray and X-ray powder diffraction, respectively.¹⁴ Here the point of interest for a preparative chemist is the benchmark of a P-P single bond length, which is usually referred to as the one of the gaseous P₄ determined by electron diffraction at 470 K to be 2.21(2) Å.¹⁵ An analysis of the vibration-rotation Raman spectrum yields 2.2228(5) Å,¹⁶ and in β -P₄, P–P distances of 2.199-2.212 Å¹³ are found by applying a rigid body libration correction. However, according to quantum chemical calculations, a value of 2.194 Å is appropriate¹⁷ (for the P_2 moiety, 1.898 Å¹⁸). Owing to the experimental uncertainties, the use of the calculated values is recommended for reference purposes.

When white phosphorus is heated or irradiated by UV light, it is transformed to amorphous red phosphorus. The structure of the red phosphorus is regarded to be a polymeric network of different building units. Commercially available red amorphous phosphorus is entitled as "type I". By further annealing, four crystalline phases are formed, labeled as types II, III, IV, and V red phosphorus, characterized by X-ray powder diffraction.¹⁹ Among these phases, in 1966 the red phosphorus V form was structurally characterized by X-ray diffraction by Thurn and Krebs,²⁰ which was identified to be the so-called violet or Hittorf's phosphorus, that Hittorf described earlier in 1865.²¹ Recently, Ruck et al. were able to characterize a second form by single crystal X-ray diffraction, the red phosphorus IV modification as fibrous phosphorus.^{22,14}

Figure 1. Phosphorus strands of $\frac{1}{\omega}$ {]P2[P8]P2[P9]} in (a) fibrous phosphorus, (b) violet phosphorus, (c) $\frac{1}{\omega}$ {]P4[P8]}, and (d) $\frac{1}{\omega}$ {]P2[P10]}. For the notations P2, P4, P8, P9, and P10, cf. ref 23.

As shown in Figure 1a and b, in these two allotropes, P_8 cuneane-type units are connected with P_9 moieties by a P_2 linker. According to the nomenclature developed by Häser et al.,²³ both types are described as ${}^{1}_{\infty}$ {]P2[P8]P2[P9]} strands, which are linked crosswise with one another via P9 units (Hittorf's phosphorus) or parallel under formation of double tubes (fibrous phosphorus). Corresponding to theoretical calculations, both forms are isoenergetic cluster equilibrium structures. Furthermore, by polymerization of elemental phosphorus in a CuI matrix, three different polymers, $(CuI)_8P_{12}$,²⁴ $(CuI)_2P_{14}$,^{25a} and $(CuI)_3P_{12}$,^{25b} were obtained, the latter two of which were isolated after removal of CuI by an aqueous KCN solution, yielding nanorod-like polymers ${}^{1}_{\infty}$ {]P4[P8]} and ${}^{1}_{\infty}$ {]P2[P10]} as new allotropes of phosphorus.²⁶ Recently, polycrystalline phosphorus nanorods were synthesized from P₄ phosphorus catalyzed by Bi nanoparticles which reveal similarities to the red phosphorus II form.²⁷ Moreover, a nanocomposite of red phosphorus with organophosphorus compounds was obtained by radiationinduced (γ radiation of ⁶⁰Co) polymerization of white phosphorus in benzene at ambient temperature.²⁸ Furthermore, by neutralization-reionization (NR) mass spectrometry, a benzvalene-like neutral P_6 molecule is proven to exist in the gas phase.²⁹

Coming back to the phosphorus type I modification of red phosphorus, Häser et al. employed ab initio calculations (SCF/SVP level) to calculate energies (relative equilibrium energy given in kJ mol⁻¹ (P₄)), bond lengths, and angles of violet phosphorus and others at a time when polyphosphorus strands and species were unknown.²³ The agreement with the experimentally determined values for Hittorf's phosphorus is so convincing that it is expected that such calculations of analogous structures of experimentally unestablished structures should also be reliable. Thus, by comparison of calculated radial distribution functions with experimentally obtained ones, Häser et al.²³ could show that red phosphorus most likely contains species such as $\frac{1}{\infty}$ { [P2[P8]P2[P9] } of Hittorf's phosphorus and fibrous phosphorus (the latter was unknown at that time), respectively, and $\frac{1}{\infty}$ {]P2[P10]} (all about $E_{\text{theor}} = -61$ to 62 kJ mol^{-1} (P₄) relative to molecular P₄ phosphorus).³⁰ The latter helical strand was found afterward in the CuI matrix of $(CuI_3)P_{12}^{25b}$ and finally in one nanorod-like allotrope of phosphorus.²⁶

Moreover, it should be mentioned that the tetrahedral AsP₃ molecule was synthesized as an isolable compound by a transition metal mediated approach, and the formation of a mixture of compounds of the formulas As_nP_{4-n} (n = 1-3) was reported.³¹

2.2. Stability of Neutral Polyphosphorus Species

Numerous computational studies on anionic P_n^- clusters with $n = 1-9^{32}$ were done as well as for positively charged cations $P_{(2n+1)}^+$ with n = 3-5.^{33a} In contrast, far fewer experimental facts obtained by time-of-flight mass spectrometry are known about larger polyphosphorus clusters in the form of cations P_n^+ ($n \le 89$) and anions P_n^- ($n \le 49$) obtained by laser ablation of red phosphorus.^{33b,34}

As already mentioned, one focus of this review is devoted to neutral polyphosphorus clusters and species, which are related in their stability to white phosphorus. From an experimental as well as theoretical point of view, the question arises whether there are neutral polyphosphorus species which are more stable than P₄ itself. Or, if not, what are the next stable molecules on the energy scale? Since in the case of neutral polyphosphorus species numerous calculations have been carried out with different basis sets and theoretical methods,³⁵ the comparability of these results on a consistent scale is not completely possible. Thus, in the following, evennumbered neutral polyphosphorus species are compared, whose structural parameters were calculated by ab initio SCF/SVP methods.²³ Other methods give different values of energy; however, from the relative tendencies, they show the same sequence.

Tetrahedral P₄ is -201 kJ mol^{-1} (P₄ $\rightarrow 2P_2$) more stable than the P₂ molecule,³⁶ which is the most unstable moiety among free P_n units. Also, the aromatic cyclohexaphosphabenzene is 20.1 kJ mol⁻¹ more stable than three separate P₂ molecules.³⁷ Here the stabilization in an aromatic system is much more favorable, as is also found for anionic *cyclo*-P₅ moieties.³⁸ The latter is known to be a discrete species in solution,³⁹ and both are known ligands in coordination chemistry.⁴⁰ However, the benzene-like D_{6h} planar hexagon is the least stable P₆ isomer and distorts spontaneously to nonplanar, less symmetrical 6-membered rings.^{41a} Its aromaticity is also less pronounced than in benzene.^{41b-d} From a thermodynamic point of view, naked polyphosphorus

Figure 2. Grading of the stability of P_6 and P_8 moieties in comparison to tetrahedral P_4 ($1.5P_4 \rightarrow P_6$, $2P_4 \rightarrow P_8$). Energies are given in kJ mol⁻¹ (P_4) relative to P_4 calculated at the SCF/SVP level of theory.

moieties prefer smaller bond angles, in contrast to isolobal CH derivatives, which leads to different trends in stabilities.⁴² Therefore, in the midst of P₆ species, the D_{3h} symmetric prismane is more stable than the D_{6h} symmetric *cyclo*-P₆.⁴³ In addition, the benzvalene-type C_{2v} symmetric molecule is even more stable (Figure 2).⁴⁴

Similar tendencies are found within the P₈ species, for which the cubic octahedral P8 was the focus of interest for a long time and thought to be an accessible species. In contrast, it is, by 75 kJ mol⁻¹, more unstable than P₄,³⁶ but once it is formed, the dissociation into P₄ molecules from its ground state is forbidden.^{45a} Calculations of other stable P_8 molecules reveal that the C_{2v} symmetric cuneane is the most stable species, 45b followed by a D_{2h} symmetric moiety in which two tetrahedrons are linked by two edges (Figure 2).⁴⁴ Within these smaller P_n molecules (up to P_{10} moieties), tetrahedral P_4 is the most stable one. Interestingly, by using SCF MO calculations at the 4-31G* level, the P₈ cuneane molecule comes close in energy to 2P4,46 which was confirmed by CBS-Q calculations.⁴⁷ The latter calculations give evidence that at 0 K the cuneane structure is more stable $(\Delta E^{\circ} = -13.8 \text{ kJ mol}^{-1})$ than P₄, but under standard conditions still unstable for entropic reasons ($\Delta G^{\circ} = +33.9$ kJ mol⁻¹ vs 2P₄).

Beginning from P_{10} and going to P_{28} cages (Figure 3), there is a change in the stability relative to the tetrahedral P_4 molecule.^{23,44} As shown in Figure 3, the predominantly favored P_n aggregates from numerous calculated species of each composition, the species gain in energy, which are structurally more related to motives of Hittorf's phosphorus. So, if P_8 cuneane-like motifs are connected by P_2 moieties, the formed cages are energetically most favored in comparison to tetrahedral P_4 .

Moreover, icosahedral and ring-shaped polyphosphorus moieties have been calculated and compared in their thermodynamic stabilities to the known P_n allotropes.⁴⁸ These calculations show the stability of icosahedral P_{80} , P_{180} , P_{320} , P_{500} , and P_{720} species consisting of 5- and 6-membered rings is higher than that of P_4 phosphorus. Only the pentagon—icosahedral P_{20} molecule is less stable. In contrast, beginning with P_{120} up to P_{360} , ringlike allotropes built by P_8 cuneane moieties and linked by P_2 units reveal larger stabilities than the known P_n allotropes.⁴⁸

3. General Trends of P₄ Phosphorus Activation

3.1. General Remarks

In general, the reactivity of tetrahedral P₄ phosphorus is attributed to the high bond strain energy.49 Interestingly, newer analyses of the bonding in the P₄ cluster⁵⁰ show that in the singlet-ground-state of P₄ the vector linking the phosphorus nuclei and the direction of the bond critical point (BCP) is only $\sim 5^{\circ}$, which might relativize the role of bond strain. Interestingly, a kind of spherical aromaticity was discussed for P₄ and other inorganic cage molecules based on the nucleus-independent chemical shift (P₄(T_d) δ = -52.9).⁵¹ The excited triplet-state of P₄ is 102.3 kJ mol⁻¹ higher in energy in comparison to the neutral singlet-state and captures a butterfly like structure.⁵⁰ Oxidation of P₄ leads formally to P_4^+ , which is calculated to favor a D_{2h} symmetric molecule with four "short" and two "long" bonds (1138.1 kJ mol⁻¹ higher than P₄) in comparison to a regular tetrahedron structure of P_4^{50} using the Bader topological theory.⁵² Moreover, if P_4 is reduced to P_4^- , a distorted D_{2h} structure is formed which is, only by 119.7 kJ mol⁻¹, higher in energy than neutral P_4 . Thus, the anionic P_4^- species seems to be decisive for P_4 polymerization, leading to P_n allotropes which can be thermally induced, photochemically, by $\beta^$ radiation,⁵³ or nucleophilically. These calculations agree well with the experimental observations that P₄ phosphorus reacts predominantly under nucleophilic activation, revealing electrophilic reactivity. In the ground state analysis of P₄, electron densities are found for the positions of electron lone pairs. These are responsible for the nucleophilic reactivity of P_4 . The general reactivity pattern of P₄ is highlighted in Scheme 1 and shows that places of predominant nucleophilicity of P_4 are the lone pairs at the P apexes and the filled σ -bond of the P-P bonds, which are, in principle, able to react with electrophiles.

However, the nucleophilicity of P_4 is less pronounced and usually observed in the reaction with organylhalides under drastic conditions (>250 °C), often in which I_2 is added to increase the yield of the target products PX_3 and R_4PX .^{9f,54} In 1979, Fluck et al. reported on *ab initio* calculations of the protonation of P_4 .⁵⁵ They concluded that a preferred protonation proceeds at an apex of the P_4 molecule, followed by an edge protonation, whereas an attack of H⁺ at a P_3 face was excluded. In 1996, Abboud et al. calculated the gas-

Figure 3. Grading of the stability of even-numbered P_n moieties with $n \ge 8$ in comparison to tetrahedral P_4 . Energies are given in kJ mol⁻¹ (P_4) relative to P_4 calculated at the SCF/SVP level of theory.

Scheme 1. General Reactivity Pattern of P₄ Phosphorus Revealing Electrophilic and Nucleophilic Reactivity as Well as Radical Bond Breaking

phase basicity of P_4 by using MP2/6-31G(d,p) methods and showed that a H⁺ bridged opened P–P edge structure is, by 45.2 kJ mol⁻¹, more stable than an apex-attached molecule (Figure 4).⁵⁶

Often the reaction of P_4 with the electrophilic reagents is accompanied by the presence of nucleophiles such as HO⁻. The combined action of electrophiles and nucleophiles leads to a consecutive splitting of all P–P bonds to obtain P_1 moieties. Since the experimental details of these few reactions with electrophiles as well as the electrochemical activation of P_4 are well summarized in a review on organophosphorus compounds,^{9f} the present review will focus on more recent results in this area. In contrast, according to experimental findings, the major reactivity pattern of tetrahedral P_4 is its electrophilicity. Thus, nucleophiles attack predominantly an apex P atom or an edge of the P_4 tetrahedron (Scheme 1). Moreover, full breaking of a P–P single bond, initialized, for example, by UV

Figure 4. Energetic differences (MP2/6-31G(d,p) level of theory) of protonated P₄ structures; adapted from ref 56.

radiation, is a high energy process⁵⁷ and would lead to a biradical, which can be alternatively represented as zwitterionic structures (Scheme 1).

In light of unknown and undetermined mechanistic aspects of the P_4 reactivity in most of the published experimental details in the present review, it is difficult to classify it into electrophilic, nucleophilic, and redox activation, respectively. In the following, this problem will be avoided by an arrangement of the reactions according to the main group number of the substrate reacting with P_4 . However, because recent results show degradation of P_4 by special nucleophiles in the following, these data will be discussed according to the aspect of the maintenance of P_4 or polyphosphorus structural units. Therefore, for the latter, conclusions on possible mechanisms can be drawn.

3.2. Degradation of P₄ Phosphorus by Nucleophiles under Maintenance of P_n Structural Moieties

Although the phosphorus atoms in the P_4 tetrahedron exhibit a lone pair of electrons, P_4 mainly shows an electrophilic character and can be attacked by nucleophiles. If the nucleophile is charged, the nucleophilic attack occurs at one of the phosphorus atoms and causes the opening of the tetrahedron, leading to a butterfly like bicyclo[1.1.0]tetraphospabutane moiety **3-A** (eq 1). Although the subsequent reactivity is reduced, **3-A** is still reactive against nucleophiles and different reaction pathways are opened which lead to different products depending on the nature of the nucleophiles, trapping reagents, and reaction conditions used. Strong nucleophiles shift the equilibria (eq 1) to the right whereas weak nucleophiles shift the reaction to the left. In the latter case, the presence of electrophiles is required in order to degrade P_4 .

The degradation of P_4 can hardly be stopped at the stage of **3-A**. Nevertheless, if the bulky organic nucleophile 2,4,6*t*Bu₃C₆H₂Li is reacted with P_4 in the presence of the corresponding aryl bromide as an electrophile, it is possible to stop the degradation of P_4 by the stage **3-A**.⁵⁸ The structure of the resulting bicyclo[1.1.0]tetraphosphabutane is depicted in Figure 5. A structure of type **3-A** is also proposed for the pentaphosphide, KP₅H₂, prepared from KPH₂ and P₄ in DMF.⁵⁹ Even though it was only characterized by ³¹P NMR spectroscopy and molecular weight determinations, the tetraphosphanide HP₄⁻ featuring a structure of type **3-A** is also known; however, it was not synthesized by the direct reaction of P₄ with H⁻ but by reduction of P₄ with Na/K naphthalenide.⁶⁰

Reacting P₄ with strong nucleophiles such as sodium hydroxide or sodium ethoxide in EtOH generates a dark red solution which is suggested to contain uncharacterized metastabile phosphanides, which decompose slowly to H₂, PH₃, and Na₃PO₂.⁶¹ The addition of electrophiles such as MeI to these red solutions followed by oxidation with HNO₃ gives a mixture of MePH₂, MePO₃H₂, Me₂PO₂H, and Me₃PO. The electron deficient alkylating agents acrylonitrile, acrylamide, ethyl acrylate, and vinylphosphonate are also used as trapping reagents, giving mainly the corresponding phosphine oxides as the reaction product.⁶² Similarly, allyl halides and 2-chloro-5-(chloromethyl)thiophene react with

Figure 5. Molecular structure of $(2,4,6-tBu_3C_6H_2)_2P_4$ as type **3-A** compound; adapted from ref 58. Hydrogen atoms are omitted for clarity.

white phosphorus in the presence of hydroxide (superbase media) mainly to give a mixture of tris(propen-2-yl), bis(propen-2-yl)(E-propen-1-yl), and bis(E-propen-1-yl)(propen-2-yl)phosphine oxides and tris[(5-chloro-2-thienyl)methyl]phosphine oxide, respectively.⁶³ Furthermore, nontypical weak electrophiles such as styrene, vinylpyridines, and phenylacetylene were used to functionalize P4 in superbase media.⁶⁴ Tertiary phosphine oxides are the main reaction products of the reaction of N-hydroxymethyldialkylamines with P4 along with phosphonic and phosphinic acids.65 Weaker nucleophiles such as methanol or ethanol react with white phosphorus only by heating, giving a mixture of the corresponding alkylphosphines and phosphonium salts.⁶⁶ The reaction of amines with P₄ leads to insoluble precipitates which are proposed to be another modification of phosphorus.⁶⁷ A reaction mechanism with the formation of an intermediate of type 3-A is proposed. However, if the reaction of P4 with NH3 is performed at pressures higher than 5 kbar and temperatures above 250 °C, the hexaamminocyclotriphosphazene $P_3N_3(NH_2)_6 \cdot 0.5NH_3$ is formed among red phosphorus.⁶⁸

The degradation of P₄ phosphorus is also proceeded by carbon centered nucleophiles such as organolithium or organomagnesium compounds to give dark red solutions believed to be complex organophosphanides.⁶⁹ Quenching these solutions with alkylating agents leads to mixed tertiary phosphines, while hydrolysis gives primary phosphines with small amounts of secondary and tertiary phosphines. Depending on the reaction conditions, cyclotetraphosphanes $(RP)_4$ (R = Et, Pr, Bu) are also formed.⁷⁰ In each case, the main side product of this reaction is an insoluble amorphous yellow solid. The examined reaction of P₄ with MeLi and tBuLi shows that oligophosphides and partly alkylated oligophosphides mainly containing the nortricyclane P7 unit are formed. This is then trapped with Me₃SiCl to give the corresponding phosphines.⁷¹ The reaction of P₄ with alkali metal acetylides followed by treatment with alkyl halide leads to the formation of acetylenic phosphines (RC=C)PR'2 and $(RC \equiv C)_2 PR'$ (R = R' = Et; R = Et; R' = Pr; R = Ph; R'= Et). The phosphides (RC=C) P^{2-} and (RC=C) $_{2}P^{-}$ were proposed to be intermediates in these reactions.⁷² Reacting lithium (trimethylsilyl)diazomethanide Li[Me₃SiCN₂] with P₄ leads to the formation of the 1,2,3,4-diazadiphospholide anion, which can easily be protonated by trifluoroacetic acid to 2H-1,2,3,4-diazadiphosphole.73 The degradation of P₄ by cyanides proceeds much cleaner, leading to the dicyanophosphanide $P(CN)_2^-$ and the polyphosphide P_{15}^- (eq 2; X = CN).⁷⁴ Similar to cyanides, Ph_2P^- reacts with P_4 to form the triphosphide $(Ph_2P)_2P^-$, the diphosphane $(Ph_2P)_2$, and polyphosphides (eq 2; $X = Ph_2P$). Linear phosphides of the type $(PhP)_n^{2-}$ (n = 1, 2, and 3) react with P₄ by extending their chain length up to n = 4, whereas $(PhP)_4^{2-}$ reacts with P_4 to form the cyclopentaphosphide $Ph_4P_5^{-.75}$ If phosphorus undergoes disproportionation reactions, this behavior toward nucleophiles can be rationalized in the following way: the oxidized 4-electron P^+ species is stabilized by the addition of two ligand molecules X⁻ to give the closed shell moiety PX_2^- and the reduced P^{3-} species tries to distribute the high charge by its transfer to other P atoms. As a result, polyphosphides are formed. This proceeds if an excess of the nucleophile is used (eq 2). Using R_2POM (M = Li, Na; R = Et, Ph) as nucleophiles, the degradation of P₄ can be stopped at the stage of a P_2 unit, and $P_2X_2^{2-}$ species are formed if a deficit of the nucleophile is used (eq 3; X =

 R_2PO).⁷⁶ Thus, as a result, $M_2[OP(R_2)PP(R_2)PO]$ and $M[OP(R_2)P(R_2)PO]$ are formed together with polyphosphanides such as P_7^{3-} and P_{16}^{2-} , respectively. The products are characterized by ³¹P NMR spectroscopy.

$$P_4 + 2X^{\ominus} \rightarrow PX_2^{\ominus} + P_n^{\ominus}$$
(2)

$$P_4 + 2X^{\ominus} \rightarrow P_2 X_2^{2\ominus} + P_n^{\ominus}$$
(3)

It could be shown that small carbon anions C_n^- (n = 3-9) react with gaseous P_4 under the conditions of Fourier transform ICR mass spectrometry to give carbon phosphide anions such as C_nP^- , $C_nP_2^-$, $C_nP_5^-$ (n = 3 - 9), and $C_4P_4^{-.77}$ The stability and structure of these anions have been investigated by theoretical methods.

The reaction of weak nucleophiles with P₄ is strongly accelerated by the presence of electrophiles in the reaction media. The common electrophile that is widely used is CCl₄.^{9c,e} The reaction mechanism is not clear, but a series of nucleophilic attacks with P-P bond cleavages and combinations of the formed phosphides with the electrophilic reagent, followed by nucleophilic substitutions is proposed. Usually this type of reaction leads to the complete degradation of P₄ to compounds containing one phosphorus atom. Reacting P₄ with amines in the presence of CCl₄ followed by hydrolysis leads to trisamides of phosphoric acid. The additional use of the HF donator Et₃NHF leads to the formation of $HPF_5^-,\ R_2NHPF_5,\ and\ (R_2NH)_2P(O)F.^{78}$ P_4 reacts similarly with NaOR79 or NaSR80 in the presence of CCl₄ to give (RO)₃P and (RS)₃P, respectively. (RO)₃P can be converted to $(RO)_2(O)PH$ by hydrolysis, whereas $(RS)_3P$ gives (RS)₃PO under oxidizing conditions.

Phosphorus centered nucleophiles such as phosphanides are able to react with P₄, leading to P–P bond formation and, as consequence, to phosphorus-rich compounds. Thus *o*-phenylene-bis(lithiumphenylphosphanide) reacts with P₄ under formation of a benzotriphosphole derivative shown in eq 4. In addition, Li₃P₇ is formed.^{81,76b} Larger oligophosphides can be obtained by the reaction of Cs₄P₆ or Na₃P₇ with P₄ in en to give the phosphorus rich phosphides Cs₃P₁₁(en)₃ and M₄P₁₄(en)_x (M = Na, Cs), respectively.⁸² Alkali metal phosphides are also used as a phosphorus source by the reaction of P₄ with alkali metals.

A more controllable degradation of P_4 phosphorus is achieved by reacting the bulky, silicon centered nucleophiles tBu_3Si^- , tBu_2PhSi^- , or $(Me_3Si)_3Si^-$ with P_4 . The nature of the reaction products and the degree of the degradation of the P_4 tetrahedron is strongly dependent on the stoichiometry and the solvent used. High amounts of silanide R_3Si^- and polar solvents favor stronger degradation whereas a deficit of silanide and less polar solvents degrade P_4 to a lesser extent. Here, the use of bulky silanides allows a deeper insight into the mechanism and pathways of the nucleophilic degradation of P_4 , and comprehensive conclusions can be drawn from the individual results, which are summarized in Scheme 2.

Although compounds of type 3-A are not isolated by the reaction of silanides with P_4 , it is postulated to be an

intermediate by the reaction of P₄ with [(Me₃Si)₃SiK(18crown-6)], leading to the octaphosphide 3-B (R = (Me₃Si)₃Si). Compound **3-B** is proposed to be the dimerization product of **3-A**, followed by rearrangements through intramolecular nucleophilic attacks.83 The addition of 2 equiv of tBu_3SiM (M = Na, K) to P₄ results in the formation of **3-C** as an intermediate. Although a stable compound of type 3-C could not be isolated, the core structure can be found in different organophosphanes of the type $P_3R_2(PR_2)$.⁸⁴ Reorganization of **3-C** leads to the formation of the tetraphosphenediide **3-D**, which is known for $R = tBu_3Si$, tBu_2PhSi ; M = Li, Na, K, Rb, Cs, and Ba.⁸⁵ According to ³¹P NMR spectroscopic studies, $Na_2[(tBu_3Si)_2P_4]$ adopts a *cis* configuration in THF solutions, but the ion separated compound [Na(18-crown-6)(THF)₂]₂[(tBu₃Si)₂P₄] adopts a trans configuration in the solid-state. The structure of the 3-D-type anion in [Na(18-crown-6)(THF)₂]₂[(tBu₃Si)₂P₄] is depicted in Figure 6.85d 3-D is stable in THF, but it dimerizes in weakly polar solvents to the octaphosphide 3-E. This reaction is reversible, and in less polar solvents, **3-E** can be converted via a [2 + 2] retrocycloaddition to **3-D**. The straightforwardness of this equilibrium is ascribed to the cluster-like structure of $M_4(3-E)$.^{85a} The structure of the 3-E-type compound

Figure 6. Molecular structure of the anion in $[Na(18-crown-6)(THF)_2]_2[(tBu_3Si)_2P_4]$; adapted from ref 85d. Hydrogen atoms are omitted for clarity.

Figure 7. Molecular structure of $[Na(DME)]_4[(tBu_3Si)_4P_8]$; adapted from ref 85a. Hydrogen atoms and *tBu* groups are omitted for clarity.

 $[Na(DME)]_4[(tBu_3Si)_4P_8]$ (DME = 1,2-dimethoxyethane) is depicted in Figure 7.

The pentaphosphide $(tBu_3Si)_3P_5Na_2$ (type **3-F**) is formed by increasing the tBu_3SiNa/P_4 molar ratio to 4:1 in benzene.⁸⁶ Alternative synthesis of **3-F** is achieved by protolysis of the tetraphosphide $(tBu_3Si)_2P_4Na_2(THF)_n$ (type **3-D**) with CF₃CO₂H in THF or by dissolving crystals of $(tBu_3Si)_2P_4Na_2-$ (THF)_n in toluene. Degradation of **3-E** with silanide also leads to the formation of **3-F**, which is known for R = tBu_3Si and M = Na, K, and Ag.^{85b,c,87} Both $(tBu_3Si)_3P_5Na_2$ and $(tBu_3Si)_3P_5Ag_2$ possess a dimeric structure in the solid state, whereas the former is monomeric in THF. Interestingly, $(tBu_3Si)_3P_5Na_2$ (type **3-F**) is quantitatively oxidized by tetracyanoethene to bicyclo[2.1.0]pentaphosphane $(tBu_3Si)_3P_5.^{85b}$ Addition of tBu_3SiNa to the pentaphosphane re-forms $(tBu_3Si)_3P_5Na_2$ (type **3-F**) along with $tBu_3SiSi(tBu)_3$.

Reactions of P₄ with the silanides tBu_3SiM (M = Li, Na) and $tBu_2PhSiNa$ in a 1:3 stoichiometry lead to the formation of the corresponding phosphides of type **3-G**.⁸⁸ THF solutions of **3-G** (R = tBu_3Si ; M = Li, Na) decompose slowly at ambient temperature to the corresponding phosphides of type **3-H** and tBu_3SiPM_2 . Interestingly, the tBu_2PhSi derivatives of **3-G** decompose to pentaphosphides of type **3-F** rather than to triphosphides of type **3-H**.⁸⁸ If the reaction of tBu_3SiK with P₄ is performed in a 3:1 stoichiometry in THF, the tetraphosphide **3-D** (R = tBu_3Si ; M = K) and the octaphosphide **3-E** (R = tBu_3Si ; M = K) are formed first, which are subsequently slowly decomposed by unreacted tBu_3SiK at room temperature to the triphosphide **3-H**, pentaphosphide **3-F**, and monophosphanide tBu_3SiPK_2 .⁸⁷

The degradation of P_4 from nucleophiles can also be initiated by electrolysis. Under electrocatalytic conditions, nucleophiles such as RO⁻ can be generated. In the presence of electrophilic reagents, these nucleophiles react with P_4 in a joint action leading to the degradation of P_4 . The reaction products are various organophosphorus compounds such as esters of phosphoric, phosphorus, and phosphonic acids, tertiary phosphines, and other organophosphorus compounds. By this method, the formation of phosphorus esters containing P–O, P–N, and P–S bonds as well as compounds containing P–C bonds are reported.⁸⁹

4. Activation and Degradation of P₄ Phosphorus by Main Group Elements and Compounds

Independent of the reaction mechanism, which is usually not or only partly understood, the following results of P_4 activation by main group compounds are presented according to the group number of the activating main group element in the compound. Whereas for group 1 and 2 elements a reductive activation of P_4 occurs, the reaction of the corresponding main group compounds is mainly a nucleophilic degradation of P_4 . Starting from group 13 element compounds, the majority of cases are based on the attack of a carbene-like moiety at the P_4 tetrahedron. In contrast, in some cases, electrophilic attack occurs at the P_4 phosphorus, as in the case of corresponding phosphenium cations.

4.1. Activation of P₄ Phosphorus by Group 1 and 2 Elements and Compounds

The reaction of alkali metals with white phosphorus leads to alkali metal phosphides or oligophosphides. These reactions can be performed in liquid ammonia as well as in polar organic solvents such as tetrahydrofuran, dimethoxyethane, or ethylenediamine. The nature of the phosphides obtained is strongly dependent on the atomic ratio of phosphorus and alkali metal, the solvent used, the size of the cation, and the reaction conditions. Depending on the reaction conditions, simple phosphides, polycyclic phosphides, and aromatic or pseudoaromatic cyclophosphanes could be obtained. Phosphides of the type P^{3-} are produced, usually using a high M/P atomic ratio in the reaction of P_4 with alkali metals in organic solvents. Reducing the M/P ratio leads to the formation of polyphosphides.

Early results of the reaction of alkali metals (Li, Na, K) in liquid ammonia with toluene solutions of P₄ describe the formation of phosphides with unknown structures.⁹⁰ More recent investigations by using only liquid ammonia as solvent and the atomic ratio of P/Na of 3:5 report on the isolation of [Na(NH₃)₅][Na(NH₃)₃(P₃H₃)], containing the all-trans *catena*-triphosphide $P_3H_3^{2-}$ (eq 5).⁹¹ Under similar reaction conditions (P_4/K atomic ratio of 1:2.25), the potassium salt of the *catena*-dihydrogen triphosphide P₃H₂³⁻ is isolated as K₃(P₃H₂)•2.3NH₃ and characterized by single crystal X-ray diffraction (eq 6).92 The Rb and Cs salts of P₃H₃²⁻ [Rb(18- $(rown-6)_2(P_3H_3) \cdot 7.5NH_3$ and $[Cs(18-crown-6)]_2(P_3H_3) \cdot 7.5NH_3$ $7NH_3$ as well as the Rb salt of $P_3H_2^{3-}$ are also reported; however, they are synthesized by dissolving diphosphane, P_2H_4 , and a cyclohexaphosphide, P_6^{4-} , respectively, in liquid ammonia followed by crystallization.⁹² Reacting P₄ with Na in liquid NH₃ in a 2:1 or 1.5:1 atomic ratio yields the 1,3diaminotriphosphane $P_3H_3(NH_2)_2$; however, it is only stable

in liquid NH₃.⁹³ According to ³¹P NMR spectroscopic investigations from the three possible diastereomers, only the *erythro*,*erythro* isomer with transoid oriented NH₂ groups is formed. Side products of this reaction are NaPH₂, Na₂HP₇, and higher phosphides.⁹⁴

$$3P_4 + 5Na \xrightarrow{\text{NH}_3(1)} [\text{Na}(\text{NH}_3)_5][\text{Na}(\text{NH}_3)_3(\text{P}_3\text{H}_3)] + \text{Na}(\text{NH}_2)$$
(5)

$$P_4 + 2.25K \xrightarrow{\text{NH}_3(l)} K_3(P_3H_2) \cdot 2.3\text{NH}_3 \tag{6}$$

The $6-\pi$ aromatic P_4^{2-} in $Cs_2P_4 \cdot 2NH_3$ is prepared as a side product by reacting P_4 with cesium in THF followed by solvation in liquid ammonia (eq 7). The main product of this reaction is $Cs_3P_7 \cdot 3NH_3$. An alternative synthesis of $Cs_2P_4 \cdot 2NH_3$ is the reaction of the diphosphane P_2H_4 with metallic cesium.⁹⁵

The phosphorus rich phosphide P_{14}^{4-} is obtained by reacting Li with P_4 in a 1:1 atomic ratio in liquid ammonia (eq 8). The P_{14}^{4-} anion in [Li(NH₃)₄]₄ P_{14} •NH₃ consists of two nortricyclane-like (P_7^{3-}) units which are bound by a P–P bond.⁹⁶ At room temperature, [Li(NH₃)₄]₄ P_{14} •NH₃ eliminates ammonia, but by dissolving the obtained solid in liquid ammonia, the starting material is re-formed in quantitative yield. The sodium salt of P_{14}^{4-} , i.e. Na₄(DME)₈ P_{14} , is synthesized by reacting sodium naphthalene with white phosphorus in 1,2-dimethoxyethane (DME).⁹⁷

The product distribution of the reaction of P_4 with alkali metals is also influenced by the solvent and reaction temperature used. Solvents with low boiling points, such as ammonia, lead to relatively small phosphides, whereas solvents with higher boiling points usually produce higher aggregated polyphosphides, depending on the P/M ratio.

Reacting white phosphorus with Na in a 1:3 ratio in inert organic solvents such as benzene, THF, or 1,2-dimethoxyethane, the phosphide Na₃P is obtained, which is subsequently quenched by alkyl halides to give a varying mixture of tetramethyl- and trimethylphosphonium salts.⁹⁸ The reaction of a Na/K alloy with white phosphorus (P/M = 1:3) in boiling THF or DME leads to the formation of the phosphides M₃P, which can subsequently be reacted with Me₃SiCl to give (Me₃Si)₃P.⁹⁹ If a 1:0.6 atomic ratio of P to M is used and the reaction mixture is reacted with Me₃SiCl among (Me₃Si)₃P and (Me₃Si)₂P-P(SiMe₃)₂, the higher phosphanes (Me₃Si)₃P₇, (Me₃Si)₄P₁₄, and (Me₃Si)₅P₁₃ can be isolated.¹⁰⁰ Using (Me₃Si)₃SiCl instead of Me₃SiCl as quenching reagent, the nortricyclane derivative {(Me₃Si)₃Si}₃P₇ is isolated and structurally characterized.¹⁰¹ Similarly, quenching the in situ generated mixture of phosphides generated from P₄ and Na/K alloys with RR'SiCl₂ leads to the polycyclic silylphosphanes (Me₂Si)₃P₄,¹⁰² (RR'Si)₆P₄ (R = Me, R' = Et; R = R' = Et, R = Ph, R' = Me; R = vinyl, R' = Me; R = Me, R' = H),¹⁰³ and (MeHSi)(Et₂Si)₅P₄, with the latter two revealing an adamantane-like structure (eq 9). The triphosphanortricyclane CH₃C(CH₂P)₃ is also reported by the in situ reaction of P₄ with Na/K alloy followed by a reaction with CH₃C(CH₂Br)₃. However, the yield is low.¹⁰⁴

The first step of the reaction of P_4 phosphorus with alkali metals is expected to be a one- or two-electron transfer, leading to the formation of a radical anion or dianion, respectively, with a butterfly-like structure. This radical anion or dianion could not be isolated; however, the tetraphosphide MHP₄ (M = Na/K, Li) is synthesized by reacting P₄ with a solution of sodium/potassium naphthalenide or lithium naphtalenide in DME (eq 10).⁶⁰ HP₄⁻ represents formally the first reaction product of white phosphorus with the nucleophile H⁻. MHP₄ is stable only at low temperatures and decomposes to phosphorus rich phosphides, mainly to M₂P₁₆ and MP₅.

$$P \xrightarrow{P} P + 0.85 \text{ M/naph.} \xrightarrow{DME} M \xrightarrow{\oplus} P \xrightarrow{\oplus} P (10)$$
$$M = \text{Na/K, Li}$$

The phosphorus rich phosphide Na_2P_{16} · 8THF can be isolated by the reaction of P_4 with sodium (3:1 atomic ratio) in THF in the presence of 18-crown-6. The structure of the P_{16}^{2-} anion is built up from two deltacyclane units which contain a joint P₂ bridge (Figure 8), as it is determined by ³¹P NMR spectroscopy.¹⁰⁵ The structure of the analogous (Ph₄P)₂P₁₆ is determined by single crystal X-ray diffractions.¹⁰⁶ The lithium salt of the P_{16}^{2-} anion can also be synthesized from P₄ and LiPH₂ (23:12 molar ratio)¹⁰⁷ or by cleavage of P₄ with LiP(SiMe₃)₂.¹⁰⁸ The latter synthetic method strongly depends on the concentration of the starting materials and their molar ratio. Using a P₄/LiP(SiMe₃)₂ 1:0.5 ratio of the reactants, Li₂P₁₆•7THF can be obtained, which by further addition of LiP(SiMe₃)₂ leads to rearrangements and decomposition and finally to Li_3P_7 , Li_2P_7 (SiMe₃), and $P(SiMe_3)_3$. Using an excess of LiPH₂ in the reaction with P₄ leads to the formation of Li₃P₇ in high yield.¹⁰⁹

A mixture of higher aggregated polyphosphides containing M_3P_{19} , M_2P_{16} , M_3P_{21} , M_4P_{26} , M_2HP_7 , MH_2P_7 , and $M_2H_2P_{14}$ (M = Li, Na, Ka), among other unidentified polyphosphides, is synthesized by reacting Na, K, or LiPH₂ with P₄ (in a molar ratio varying from 2.5:1 to 1:2) in THF or DME.¹¹⁰ The isolation of the individual phosphides is not achieved, but the mixture can be enriched for M_2P_{16} , M_3P_{21} , and M_3P_{19} . Using a P/Na ratio of 2:1 leads to a mixture of polyphosphides from which Na₃P₂₁•15THF^{111,112} (Figure 8) and a solution containing the aromatic P₅⁻ anion^{113,39a} can be isolated. NaP₅ as a pure 18-crown-6 complex is prepared by reacting white phosphorus with NaPH₂ (P/NaPH₂ = 5:1 to 5.6:1) in boiling THF in the presence of 18-crown-6.^{39c,d}

Figure 8. Structures of the polyphosphides P_{16}^{2-} , P_{19}^{3-} , P_{21}^{3-} , and P_{26}^{4-} .

Interestingly, the reaction of Na with an excess of P₄ in diglyme leads, among the above-mentioned polyphosphides and P_5^- , to the 1,2,3,4-tetraphospha-(P_4CH^-) and 1,2,3triphosphacyclopentadienide $(P_3(CH)_2^-)$ anions.^{113,114} Li₃P₁₉ can also be synthesized by reacting Li₃P₇ with P₄, I₂, or 1,2dibromoethane and by the reaction of Li₂P₁₆ with LiPH₂. Li_3P_{21} is also accessible from Li_3P_7 and I_2 or 1,2-dibromoethane and by metalation of P₇H₃ with LiPH₂ or BuLi. Partial alkylation of Na₃P₂₁ with alkyl halides is also possible.¹¹⁵ Using a molar ratio of P₄/LiPH₂ or P₄/Na varying from 1.4:1 to 1:1.5, the polyphosphides Li₄P₂₆ and Na₄P₂₆ are synthesized and the lithium salt is isolated as Li₄P₂₆ • 16THF (Figure 8).¹¹⁶ A more convenient route to synthesize and isolate Li₄P₂₆•16THF is the decomposition of LiH₂P₇ in THF. Unexpectedly, the reaction of P₄ with K in THF/DME followed by extraction with wet EtOH leads to K_2P_{16} . Exchanging the solvent EtOH against THF leads to the clean conversion of K_2P_{16} to K_3P_{21} and elemental phosphorus.¹¹⁷

The activation of white phosphorus by group 2 elements is not as widespread as that by the alkali metals. In fact, no reaction is reported in which P4 is reacted exclusively with a group 2 metal. However, white phosphorus is used as a phosphorus source by dehalogenation of alkyl dihalophosphanes with magnesium in order to obtain phosphorus rich polycyclic phosphanes. The dehalogenation of tBuPCl₂ with Mg in the presence of P₄ leads to a mixture of organophosphanes^{42,118} from which $P_{9t}Bu_7$, $P_{10}tBu_8$,¹¹⁹ and $P_{13}tBu_9$ ¹²⁰ are isolated and spectroscopically characterized. The nature and distribution of the products depends considerably on the bulkiness of the organic group and on the reaction conditions. Thus, the reduction of *i*PrPCl₂ with Mg in the presence of P₄ followed by thermolysis of the reaction mixture leads, depending on the reaction conditions, to the polycyclic phosphanes $P_{11}iPr_3$,¹²¹ $P_{11}iPr_5$,¹²² $P_{12}iPr_4$,^{123,124} $P_{13}iPr_5$,¹²³ $P_{14}iPr_4$,¹²⁵ $P_{14}iPr_6$,¹²⁶ $P_{18}iPr_6$,¹²⁷ and $P_{20}iPr_6$.¹²⁸ Similarly, the reduction of RPCl_2 (R = Me, Et) with Mg in the presence of P_4 leads, among monocyclic phosphanes,⁴² to P_9R_5 , $P_{10}R_6$, $P_{10}R_4$, $P_{11}R_5$, $P_{12}R_4$, and $P_{13}R_5$ (R = Me, Et, CHMe₂).¹²⁹ The thermolysis of the cyclopentaphosphane (EtP)₅ with P₄ leads to P₇Et₃ along with P₉Et₃.¹³⁰ In this reaction, P₉Et₃ is obtained as a mixture of two configurational isomers, which undergo inversion on heating.

4.2. Activation of P₄ Phosphorus by Group 13 Element Compounds

Monovalent group 13 element compounds with relatively small substituents such as organyl groups or Cp* are electron deficient and aggregate in the solid-state to tetrahedral (E =Al, Ga) or octahedral (E = Ga) clusters. If they possess bulky substituents, such as terphenyls, dimers or monomers are formed. In solution, they deoligomerize to give monomeroligomer equilibria. These species are able to multiply insert into the P–P bonds of the P₄ tetrahedron. Thus, Schnöckel et al. found that $(Cp*Al)_4$ cleaves all P-P bonds in P₄ to yield the electron deficient cage compound (Cp*Al)₆P₄ 4.2-A, which structure consists of two face-sharing heterocubanes with two opposite corners unoccupied (Figure 9).¹³¹ Two of the Al atoms possess η^1 coordinated Cp* in a 3-fold substitution pattern, whereas the others are η^5 bound. The unusual structure of the insoluble compound 4.2-A is comparable to that of the adamantane-like isomer 4.2-A' calculated by DFT, which was chemically more expected. However, by $30-80 \text{ kJ mol}^{-1}$, it is higher in energy than 4.2-A. By using the sterically more bulky nacnac Al(I) species [HC(CMeNPh')₂Al] (Ph' = $2,6-iPr_2C_6H_3$), an insertion of the RAl unit in two opposite P-P bonds of the P_4 tetrahedron is reported by Roesky et al.¹³² The formed insoluble product 4.2-B (Figure 10) represents an oxidative addition derivative containing RAI(III) species and a P₄⁴⁻ moiety, which is confirmed by ²⁷Al MAS NMR measurements. The calculated binding energy $(127.3 \text{ kJ mol}^{-1})$ shows the strong interaction between P_4 and the Al atoms.

The tetragallane $Ga_4[C(SiMe_3)_3]_4$ reacts with P_4 phosphorus by a 3-fold insertion of the monovalent Ga unit into P-P

Figure 9. X-ray crystallographically verified structures of group 13 element polyphosphorus compounds **4.2-A**–**D**. Species **4.2-A'**, **4.2-E**, and **4.2-F** are calculated as energetically minima structures by DFT methods.

Figure 10. Molecular structure of **4.2-B**; adapted from ref 132. Hydrogen atoms are omitted for clarity.

Figure 11. Molecular structure of $[P_4Ga_3\{C(SiMe_3)_3\}_3]$ (4.2-C); adapted from ref 133. Hydrogen atoms are omitted for clarity.

bonds to form the nortricyclane-like molecule 4.2-C.¹³³ The solid-state structure is confirmed by X-ray diffraction analysis (Figure 11). However, in solution an unusual ³¹P NMR shift of -521.9 ppm is found for the apical P atom whereas the basal P atoms show an expected resonance at -202.8 ppm. Also in 4.2-C an oxidative addition reaction leading to Ga(III) moieties is discussed. In contrast to these redox reactions, starting from monovalent group 13 element compounds, Barron et al. found that the Lewis-acidic Ga(III) compound tBu₃Ga reacts with P₄ under insertion into a Ga-C bond and one P atom coordinates additionally to a GatBu₂ moiety.¹³⁴ The obtained butterfly bridged molecule **4.2-D** (Figure 9) shows NMR data similar to structurally related transition metal substituted ML_n(η^2 -P₄) compounds.¹³⁵ However, from an electronic point of view it is more related to $R_2P_2(P_2)$ compounds (cf.: Figure 5 as an example) in which the electron deficient R₂Ga species is bridged by the coordination of the lone pair of the *t*BuP moiety.

Another interesting molecule, 4.2-E, is verified by the thermodynamic calculations of Schnöckel et al., when they investigated the transport reaction of Ga or In and phosphorus (using red phosphorus as starting material) to give the highly pure binary phases GaP and InP, respectively.¹³⁶ By DFT calculations, the stability of the C_{5v} symmetric molecule **4.2-E** as well as the C_s symmetric EP₃ molecule **4.2-F** (Figure 9) is shown and identified as an important gas phase species. In this context, Gao et al. report about an aqueous synthesis of well crystallized 13/15 semiconductors GaP and InP¹³⁷ by dismutation of white phosphorus in alkali solutions. The yield of PH₃ is increased by addition of iodine, and it reacts with $E(OH)_4^-$ (E = Ga, In), obtained from E_2O_3 , to yield, e.g., GaP in these basic solutions (Scheme 3). Moreover, the preparation of nanocrystalline InP is reported by the reduction of $InCl_3$ with KBH₄ in the presence of P₄ phosphorus in ethylenediamine at 80–160 °C.¹³⁸

Scheme 3. Reaction Cycle of the Formation of GaP from P_4 and Ga_2O_3 (Adapted from Ref 137)

Scheme 4. Synthesis and Subsequent Oxidation of the TI Compound 4.2-G and Its Electronic Bonding Situations Depicted as 4.2-G-I and 4.2-G-II

The group of Power introduced sterically crowded terphenyl substituents to stabilize unusual species and bonding situations. The reaction of the weakly dimerized dithallene $(TlPh^{Dipp2})_2$ $(Ph^{Dipp2} = C_6H_3-2,6-(C_6H_3-2,6-iPr_2)_2)$ with P₄ phosphorus yields the thallium salt of the diaryl tetraphosphabutadienediide **4.2-G**.¹³⁹ The subsequent two electron oxidation with I₂ leads to the neutral diaryltetraphosphabicyclobutane P₄ $(Ph^{Dipp2})_2$ (Scheme 4), which is found to crystallize as the *trans,trans* and the *cis,trans* conformers depending on the solvent used. The X-ray structure of **4.2-G** reveals almost equal distances of the P–P bonds within the P₄ chain (2.136(4) for the exo and 2.143(6) Å for the endo P–P bonds). Thus, the bonding situation is interpreted to be rather delocalized (Scheme 4).

Moreover, it should be mentioned that the reaction of $(C_6F_5)_2$ TlBr under thermal conditions (190 °C, sealed tubes) with P₄ phosphorus is reported, which results in $(C_6F_5)_3$ P in 70% yield.¹⁴⁰

4.3. Activation and Degradation of P₄ Phosphorus by Group 14 Element Compounds

Recently, the activation of P_4 phosphorus by carbenes became a very active research area in which a large number of novel and interesting derivatives have been obtained. According to theoretical calculations, the parent triplet carbene CH₂ does not significantly interact with P_4 ,¹⁴¹ whereas for singlet methylene three energetic minima have been calculated by applying DFT methods (Figure 12).

The species of lowest energy is clearly **4.3-I** with a sideon P-P edge inserted carbene, followed by the [triangle+1]-

Figure 12. Calculated local energy minima structures of the reaction products of singlet CH_2 with P_4 ; adapted from ref 141.

structure **4.3-II** (+134 kJ mol⁻¹ higher in energy than **4.3-**I), containing a $H_2C=P$ moiety bound at a triphosphirene ring. Structure **4.3-III** is 172 kJ mol⁻¹ higher in energy than 4.3-I and represents the situation of a first attack of the singlet carbene at a P_4 apex. The calculated P-C bond length of 1.68 Å in **4.3-III** is close to an expected C=P double bond, as is also found in 4.3-II with 1.67 Å. The last structure most likely represents the first step of P₄ activation by stable singlet carbenes, for which Bertrand and co-workers find experimentally a variety of carbene compounds similar in structure to 4.3-II as initial products of the reactions with P_4 .¹⁴² This first proposed product **4.3-A** of such reactions is trapped by 2.3-dimethylbutadiene or a second equivalent of a carbene to give the isolated and structurally characterized derivatives **4.3-A**^{'143} and **4.3-A**^{''142} (Scheme 5). After rearrangement of **4.3-A**, the tetraphosphatrienes are detected as Z- (4.3-B; Figure 13) and \vec{E} -isomers and 4.3-B' and are crystallographically proven for some carbenes. Additionally, **4.3-B** is trapped by 2,3-dimethylbutadiene to give compound **4.3-B**", which is characterized by X-ray diffraction.¹⁴³ The subsequent reaction is strongly dependent on the carbene used. While NHC carbenes are less basic and, therefore, better leaving groups and favor the P_n cage formation reaction, by [3+2] cycloaddition reactions of 4.3-A and 4.3-**B**, intermediate **4.3-IV** is formed according to DFT calculations using the parent NHC (Scheme 6).¹⁴⁴ The release of the NHC, rearrangement to a heptaphosphanorbornene species 4.3-V, and subsequent $[\pi^2 + \pi^2 + \pi^2]$ reaction with another triphosphirene molecule 4.3-A without any energy barrier leads to the formation of a P_{12} cluster 4.3-C, the largest

neutral P_n aggregate so far stabilized by main group element compounds (Figure 14).¹⁴⁴

In contrast, by using a strongly basic but electrophilic carbene such as the acyclic alkyl-aminocarbene, which is one of the most electrophilically stable carbenes known, the [triangle+1]-form **4.3-A**" of P₄ could be stabilized and comprehensively characterized by NMR and X-ray (Scheme 5).¹⁴² Here no rearrangement and leaving of the carbene is observed. In contrast, by using cyclic alkyl-aminocarbenes (CAAC's), the fragmentation of P₄ is induced, leading to the structurally characterized *iso*-tetraphosphine derivatives **4.3-D** (Figure 15) and the diphosphine product **4.3-E** (Figure 16). Whereas the former product is a formal 6e⁻ reduction

Figure 13. Molecular structure of the Z-isomer 4.3-B; adapted from ref 143. Hydrogen atoms are omitted for clarity.

Figure 14. Molecular structure of 4.3-C; adapted from ref 144. Hydrogen atoms are omitted for clarity.

Figure 15. Molecular structure of **4.3-D**; adapted from ref 142. Hydrogen atoms are omitted for clarity.

Figure 16. Molecular structure of 4.3-E; adapted from ref 142. Hydrogen atoms are omitted for clarity.

product of P₄ phosphorus, the latter compound is reminiscent of a 2,3-diphosphabutadiene¹⁴⁵ and the NHC stabilized bis(phosphinidene) (Scheme 5).¹⁴⁶

Electronic differences between CAAC's and NHC's lie in the smaller singlet-triplet gap, and the HOMO is higher in energy for the CAAC's.⁸ Therefore, CAAC's may act as both better nucleophiles and electrophiles. This observed P₄ fragmentation is completed by using the least sterically demanding, stable carbene known to date, namely bis(diisopropylamino)cyclopropylidene.¹⁴² The corresponding reaction with P₄ leads to the bis(carbene) P₁ cation **4.3-F**, which is isolated from CHCl₃ solutions as the Cl⁻ salt and the structure is determined by X-ray diffraction (Figure 17). **4.3-F** displays a high field ³¹P NMR resonance at -93.2 ppm,

Figure 17. Molecular structure of the cation **4.3-F**; adapted from ref 142. Hydrogen atoms are omitted for clarity.

Scheme 7. Reaction Pathway of the Activation of P_4 by an Electrophilic Silylene

and the additionally determined ABX spin system for a probable P_3^- derivative shows the expected degradation of P_4 into a P_1 and P_3 moiety. However, the latter P_3^- product decomposes readily upon workup of the reaction mixture.¹⁴²

The big impact of P₄ activation and degradation by carbenes is accompanied by the successful use of silylenes. In 1998, West et al. reported that NHC analogues of silylenes react with P₄ to form, presumably, red phosphorus.¹⁴⁷ In contrast, the six-membered electrophilic silylene developed in the Driess group reacts with P₄ phosphorus under subsequent opening of one and two P–P bonds (Scheme 7).¹⁴⁸ The first formed bicyclotetraphosphine derivative **4.3-G** possesses a tricyclo[3.1.0]pentane-like core (Figure 18). Such structural motifs are well-known from the transition metal chemistry in L_nM(η^2 -P₄).¹³⁵

Interestingly, this structural moiety (Figure 18) is also the most stable local energy minimum of a one-to-one species of the interaction of singlet parent silylene, SiH₂, with P₄.¹⁴⁹ Here, calculated by DFT methods, similar species to **4.3-**I-4.3-III (Figure 12) are found, as for the singlet parent

Figure 18. Molecular structure of 4.3-G; adapted from ref 148. Some hydrogen atoms are omitted for clarity.

Scheme 8. Schematic Nucleophilic and Electrophilic Attack of a Carbene-like Species at a P-P Edge of the P_4 Tetrahedron

carbene CH₂. In addition, different migrated H isomers are also determined, among them a noncovalent linked SiH₂ to the P₄ molecule, revealing a bond energy of ~23.0 kJ mol⁻¹.¹⁴⁹ The monosubstituted derivative **4.3-G** reacts with another molecule of the silylene to open the opposite P–P bond to form **4.3-H**, containing a *cyclo*-tetraphosphorus unit (asterane-shaped P₄ core; Scheme 7). The P–P bond lengths are somewhat longer than those in the starting material (**4.3-G**: 2.229(2) Å (av); **4.3-H**: 2.285(1) Å (av)). The stepwise reaction sequence in the case of the silylene is different from the spontaneous multiple insertion of subvalent carbene—analogous to the group 13 elements.

The differences between the reactivity of carbenes and silylenes are significant. Recent theoretical studies¹⁵⁰ show that the major reasons lie in the predominant nucleophilic reactivity of the carbenes, in comparison to the case of the more electrophilic silylene of the Driess group. In Scheme 8 the electrophilic as well as the nucleophilic attack of a carbene-like species at the σ or the σ^* orbital of a P–P edge of the P₄ is schematically shown. This behavior is much more pronounced for more electrophilic silylenes, to result, first, in an edge opening at the P₄ phosphorus, as shown in eq 11. As shown by corresponding calculations of the transition state, the energy of this side-on attack is lowered by participation of a second molecule P4 in a trigonal bipyramidal arrangement at the silicon center. This autocatalytic effect of P₄ is not possible for carbenes, because the lone pairs are more nucleophilic and prefer a nucleophilic attack at an apex of the P₄. Here, a triphosphirene compound is first formed and subsequent cycloaddition reactions with other species lead to polyphosphorus species (eq 12).¹⁵⁰ It has not yet been calculated if this kind of interaction is also true for carbene-like compounds of group 13 elements. However, as the results for cationic phosphenium compounds show (section 4.4), the side-on attack by electrophiles is, hereby, the dominating reaction pathway.

Moreover, the silaphosphorus compound **4.3-G** serves in further reactions. With transition metal compounds such as the β -diketiminatonickel(I) complex [(L'Ni)₂•toluene] (L' = CH{CMeN(2,6-R₂C₆H₃)}₂; R = *i*Pr, Et), heterobinuclear tetraphosphorus complexes **4.3-J** (Scheme 7) with a Si(μ , $\eta^{2:2}$ -P₄)Ni core are obtained and structurally confirmed by X-ray diffraction (Figure 19).¹⁵¹ In contrast to the bissilylene derivative **4.3-H**, the second P–P bond is not opened. This P–P distance is 2.335(4) Å (**4.3-Ja**) and

Figure 19. Molecular structure of **4.3-Jb**; adapted from ref 151. Some hydrogen atoms are omitted for clarity.

Scheme 9. Reactivity of P_4 with a Disilene and Subsequent Reactions

2.351(3)/2.354(2) Å (two independent molecules in **4.3-Jb**) and, therefore, still in the range of a P–P bond interaction. EPR measurements confirm the existence of Ni(I) centers. Thus, these derivatives represent rare examples of heterobinuclear tetraphosphorus complexes with different stages of P–P bond activation.

Also, Si=Si double bond compounds are able to activate P_4 phosphorus. The reaction of disilenes with P_4 in toluene at 40 °C leads to the formation of 1,3-diphospha-2,4disilabicyclo[1.1.0]butanes (4.3-Ka-d), the structure of which is confirmed by heteroelement NMR and mass spectroscopic methods (Scheme 9).¹⁵² For the Mes/tBu derivative of the disilene at that temperature, a stable intermediate Mes₄(tBu)₄Si₄P₄ was isolated, and by ³¹P NMR characterization, two possible isomeric structures could be proposed.^{152b} Interestingly, by using a P₄ free approach, the X-ray structure of **4.3-Kd** was determined.^{152c} The following reaction of the 1,3-diphospha-2,4-disilabicyclo[1.1.0]butane 4.3-Ka with W(CO)₅THF leads to a stepwise coordination of the P lone pairs to the Lewis acidic units and the isolation of 4.3-La and 4.3-Ma, respectively. Moreover, with Pt(0) complexes such as $[(Ph_3P)_2Pt(C_2H_4)]$, the propellane-like derivative 4.3-Na is isolated. All these derivatives are spectroscopically characterized. Additionally, the structures of 4.3-Ma and d are confirmed by X-ray crystallography.^{152a,b}

In an analogous approach, P_4 is reacted with a stable phosphasilene containing a silicon-phosphorus double bond¹⁵³ stabilized by bulky substituents which enable the starting material to react at 70 °C in toluene. As a result, 1,2,3-triphospha-4-silabicyclo[1.1.0]butanes **4.3-Oa,b** are isolated as the *exo* diastereomers (eq 13). The products are characterized by NMR spectroscopy and mass spectrometry, revealing the expected data for a bicyclic compound.

Tetraphenyltin reacts with P_4 phosphorus in a sealed tube above 220 °C to form Ph_3P and alloy-like tin phosphides.¹⁵⁴ In contrast, an interesting reaction behavior of P_4 is found in the reaction with dimethyl-tin-dihydride.¹⁵⁵ Depending on the solvents used, it reacts under PH_3 elimination to form $(Me_2Sn)_6P_4$ (**4.3-P**) with an adamantane-like core (eq 14) or $(Me_2Sn)_5P_2$ (**4.3-Q**) with a norbornane-like structure (eq 15). A more tin-rich product, the 1,4-diphospha-2,3,5,6,7,8hexastannabicyclo[2.2.2]octane **4.3-R** is formed if a corresponding distannanehydride is used in the reaction with P_4 (eq 16).¹⁵⁶

By treatment of SnCl₂ with KBH₄ in the presence of P₄ phosphorus under hydrothermal conditions (EtOH, 160 °C, autoclave, 10 h), the synthesis of a compound with the composition Sn₄P₃ is reported.¹⁵⁷ As a possible mechanism, the reduction to atomic Sn and subsequent reaction with P₄ to Sn₄P₃ is proposed.

The reaction of P₄ phosphorus with benzaldehyde in H₃PO₄ under KI catalysis is reported to give an isophosphindoline derivative, L-phenyl-1,3-dihydro- $2\lambda^5$ -benzophospholic acid.¹⁵⁸ As a reaction pathway, the conversion of P₄ into H₃PO₂ is proposed, which, with 2 mols of benzaldehyde, forms bis(α hydroxybenzy1)phosphinic acid in a kind of heteroaldol condensation. The subsequent protonation and cleavage of H₂O leads to a benzylic carbenium ion which, by intramolecular Friedel–Crafts alkylation of the other benzyl ring, finally affects ring closure to form the benzophospholic acid.

Remarkable host-guest chemistry is found when P_4 phosphorus is encapsulated in a self-assembled tetrahedral capsule.¹⁵⁹ The advantage of this host-guest complex is the air stability and water solubility. By adding stronger guests, such as, e.g., benzene, P_4 is completely released into the benzene solution. Latter exposure to air causes quantitative transformation into phosphoric acid. Another example of host-guest chemistry of molecular P_4 is found when a solution of C_{60} is treated with P_4 .¹⁶⁰ The formed compound has the composition (P_4)₂ C_{60} , and the structure is determined

by XPD measurements and solved by Rietveld refinement. The analysis suggests an AAA stacking of closed packed C_{60} layers with tetrahedral P_4 units between them. The ³¹P MAS and ¹³C MAS data of the crystalline black-blue solid are interpreted as meaning that no charge transfer has occurred.

4.4. Activation and Degradation of P₄ Phosphorus by Group 15 Element Compounds

Compounds of the type R_2E^- (E = N, P) are good nucleophiles and are broadly used for the nucleophilic P_4 degradation reaction which is discussed in section 3.2. Interestingly, P_4 phosphorus induces an oxidative C-C coupling reaction when it is reacted with (2-pyridylmethyl)-(trialkylsilyl)amide, leading to P_7^{3-} as a phosphorus containing product among 1,2-dipyridyl-1,2-bis(*tert*-butyldimethylsilylamido)ethane.¹⁶¹

Another interesting behavior with P_4 is reported by the Lappert group when a sterically encumbered diphosphine $[P\{N(SiMe_3)_2\}(NiPr_2)]_2$ is used as starting material.¹⁶² ESR measurements show that in *n*-hexane solutions of the starting material a reversible dissociation occurs. Subsequent reaction with P_4 gives the diphosphanyl-bicyclotetraphosphine derivative **4.4-A** as a mixture of *meso-* and *rac-*diastereomers (eq 17).

From the metathesis of the Ag salt Ag[Al{OC(CF₃)₃}₄] with PX₃ (X = Br, I), presumably PX₂⁺ cations arise that act as electrophilic carbene analogues and insert into the P–P bond of the P₄ tetrahedron (Scheme 10).¹⁶³ By this method, the novel C_{2v} symmetric P₅ cages **4.4-Ba,b** are synthesized, the Br derivative of which is structurally characterized (Figure 20).¹⁶⁴ The quantitatively formed products are stable under inert atmosphere at -30 °C for months and are

Figure 20. Molecular structure of the cation $[P_5Br_2]^+$ (**4.4-Bb**⁺), adapted from ref 163.

Scheme 10. Reaction of P_4 Phosphorus with PX_3 in the Presence of a Silver Salt and the Proposed Intermediate of the Dihalogenphosphenium Cation (Adapted from Ref 163)

P4 Activation by Main Group Elements and Compounds

analyzed by Raman spectroscopy. Variable temperature ³¹P NMR spectroscopy in solution shows no dynamic behavior, so the rigid C_{2v} symmetry of the solid-state is maintained in solution.

The formation of the PX_2^+ salt is limited at low temperatures for which the insertion in only one P-P bond is observed, confirming the reaction behavior of electrophilic carbene-like molecules, as already discussed for silvlenes (cf. section 4.3). In contrast, diorganylphosphonium cations are much more stable and, therefore, valuable for use at higher temperatures. That opens more possibilities for multiple P-P bond insertion into the P₄ molecule. Following an established method to generate Ph₂P⁺ cations¹⁶⁵ from Ph₂PCl and GaCl₃ depending on the stoichiometry and reaction temperatures (60-100 °C), Weigand et al. succeeded in the formation and characterization of the mono-, di-, and trifold inserted P4 products 4.4-C, 4.4-D, and 4.4-E, respectively (Scheme 11).¹⁶⁶ All products are comprehensively characterized by ³¹P NMR spectroscopy, revealing no dynamic behavior at room temperature. 4.4-C[GaCl₄] and 4.4-E[Ga₂Cl₇]₃ are isolated in good yields and are very air and moisture sensitive. The X-ray structural characterization reveals the C_{2v} symmetric cage of **4.4-C** is similar to that of **4.4-B** and the nortricyclane (tricyclo[2.2.1.0^{2.6}]heptane) skeleton of **4.4-E** (Figure 21), reminiscent of the P_7^{3-} anion or P₄S₃. The 2-fold inserted product **4.4-D** is not isolated; however, it is characterized by ³¹P NMR spectroscopy in the reaction mixture together with both other products.

In continuation of these investigations, P_4 is reacted with an *in situ* formed monocation of the *cyclo*-1,3-diphospha-2.4-diazane [DippNPCI]₂ to give the monocationic compound **4.4-F** as the GaCl₄⁻ salt (Scheme 12).¹⁶⁷ By adding an excess

Figure 21. Molecular structure of the trication 4.4-E, adapted from ref 166. Hydrogen atoms are omitted for clarity.

Figure 22. Molecular structure of **4.4-G**, adapted from ref 167. Hydrogen atoms are omitted for clarity.

of the Lewis base GaCl₃ and 2 equiv of P₄, the novel dicationic species **4.4-G** is formed, in which, according to the X-ray structure, two P₄ molecules are linked as P₅⁺ moieties by imido bridges (Figure 22). Both products have been analyzed with their ambitious spin systems by ³¹P NMR spectroscopy and by single crystal X-ray diffraction.

4.5. Activation and Degradation of P₄ Phosphorus by Group 16 and 17 Element Compounds

Oxidation of white phosphorus by molecular dioxygen leads to the P(III) and P(V) oxides P_4O_6 and P_4O_{10} , from which the other phosphorus oxides P_4O_n (n = 6-10) are synthesized.¹ IR laser spectroscopic studies of the selective oxidation of P₄ vapor by O atoms reveal the suboxide P₂O as an *in situ* gas phase species.^{168,169} By this method, PO and PO₂ have also been detected.¹⁶⁹ In a more preparative approach at moist air, besides PO and PO₂ and finally phosphoric acid, O₃ was also detected and used to decompose toxic organic compounds.¹⁷⁰ By using ozone as an oxidant, P_2 molecules produced from P_4 react in a matrix to a series of P-oxides (PO, PO₂, P₂O, P₂O₂, P₂O₃, P₂O₄, and P₂O₅), among them the P₄O molecule.¹⁷¹ The latter species could be directly obtained by ozonolysis of P₄.¹⁷² Interestingly, oxygen-phosphorus systems reveal chemiluminescent properties.¹⁷³ Moreover, a series of multicomponent reactions of P₄ with oxygen and organic compounds, such as olefins,¹⁷⁴ phenols,^{175,176} or alcohols,¹⁷⁷ are reported, leading to triorganylphosphate as the P containing product.

The melt between P, sulfur, and selenium, respectively, gives, e.g., the phosphorus sulfides P_4S_n (n = 2-10) and the corresponding selenides.^{1,178} Some mechanistic studies at low temperatures (<100 °C) are reported on the reaction of P_4 with S_8 , giving evidence to the existence of a S_8 diradical.¹⁷⁹

Moreover, P_4 phosphorus is degraded by nucleophiles such as ^{-}OR and ^{-}SR , as described in section 3.2. A series of reactions between P_4 and S_8 in the presence of H_2S^{180} or directly by reaction of P_4 with polysufides¹⁸¹ was reported to give different thiophosphates. NMR evidence for phosphorus-rich cages with P_5S_2 and P_6S skeletons has been reported by the reaction of P_4 with S_8 and I_2 in CS_2 solutions.¹⁸²

Catalytic amounts of hydroxide ions catalyze the reaction of P_4 with RSSR via an ionic reaction mechanism to give (RS)₃P, whereas in the absence of HO⁻ the reaction proceeds at higher temperatures via a radical mechanism.¹⁸³

Depending on the reaction conditions, derivatives of hypophosphorous acid, phosphorous acid, mono- and diorgano hydrogen phosphonates, and phosphoric acid or triorganophosphates are produced by the oxidation of white phosphorus by hydrogen peroxide or different organic peroxides (such as tert-butyl hydroperoxide, dibenzoylperoxide, 3-chloroperoxybenzoic acid) in both aqueous and alcoholic solutions under anaerobic conditions.¹⁸⁴ The catalytic oxidative P–O coupling is accomplished by using Cu(I), Cu(II), and V(IV) complexes. A radical mechanism is suggested for both the stoichiometric and the catalytic oxidative hydroxydation, alkoxydation, and phenoxidation of P₄ promoted by peroxides both under aqueous biphasic conditions and in organic solutions. The catalytic oxidative alkoxylations of P₄ with oxygen were reported using Pd(II) and Ru(II) catalyst and a co-oxidant such as CuCl₂, NaNO₂, or FeCl₃, leading to trialkylphosphates (RO)₃P(O) and dialkylphosphites (RO)₂P(O)H.¹⁸⁵

More recently, Karaghiosoff et al. reacted P₄ with the dichalcogen dianions $Q_2^{2^-}$ (Q = S, Se, Te) in *N*-methylimidazole at ambient temperatures (eq 18).¹⁸⁶ According to the ³¹P NMR data, the dianions P₄Q₂^{2^-} (**4.5-A**) are formed among some other byproducts, such as, e.g., NaP₅, as the only detectable isomers, revealing a tetraphosphabicyclo-[1.1.0]butane butterfly-like structure with the chalcogen atoms in the sterically more favorable exo positions. Unexpectedly, the stability of the P₄Q₂²⁻ anions decreases from the tellurium to the sulfur derivative.

 P_4 phosphorus is usually oxidized by halogens to form PX_3 or PX_5 derivatives. Some mixed phosphorus halides have been synthesized by the reaction of P_4 with mixtures of halogens and characterized by NMR spectroscopy.¹⁸⁷

Krossing et al. investigated the reaction of P_4 with Br_2 and I_2 in the presence of the Ag salt $Ag^+[A]^- A^- =$ $[Al\{OC(CF_3)_3\}_4]^-$ and proposed the formation of a P_5^+ cation as an intermediate based on thermochemical calculations of Born–Haber cycles of different formation and decomposition

Figure 23. Molecular structure of the cation of 4.5-B, adapted from ref 188.

Figure 24. Molecular structure of the cation of 4.5-C, adapted from ref 188.

processes.¹⁸⁸ As products $[Cl_2P^+(CDCl_2)_2][A^-]$ (**4.5-B**) and $[P_3I_6]^+[A]^-$ (**4.5-C**) are isolated and structurally characterized by X-ray diffraction analysis. For **4.5-B** (Figure 23), the tetrahedral arrangement around the P⁺ cation is revealed, consisting of two Cl substituents and two C bound CDCl₂ moieties, with the latter coming from CD₂Cl₂. The P–C bonds represent single bond distances (1.835(9) and 1.818(7) Å). The structure of $[P_3I_6]^+$ (Figure 24), a first subvalent P-halogen cation, shows C_s symmetry with P–P and P–I bond lengths in the usual ranges. Moreover, DFT calculations on the proposed P₅⁺ cation give a C_{4v} symmetric square-pyramidal anion as the energetically most favored structure.

5. Abbreviations

18-crown-6	1,4,7,10,13,16-hexaoxacyclooctadecane ([-CH ₂ CH ₂
	O-] ₆)
BCP	bond critical point
Bu	n-butyl (C ₄ H ₉)
tBu	<i>tert</i> -butyl (C ₄ H ₉)
CBS	complete basis set
Cp*	pentamethylcyclopentadienyl (C ₅ Me ₅)
CAAC	cyclic (alkyl)(amino)carbene
DFT	density functional theory
DME	dimethoxyethane
DMF	dimethylformamide
diglyme	diethyleneglycol dimethyl ether
Dipp	diisopropylphenyl (C ₆ H ₃ <i>i</i> Pr ₂ -2,6)
en	ethylenediamine
EPR	electron paramagnetic resonance
Et	ethyl (C_2H_5)
Et_2O	diethyl ether
HOMO	highest occupied molecular orbital
ICR	ion cyclotron resonance
М	metal
MAS	magic angle spinning
Me	methyl (CH ₃)
Mes	mesityl ($C_6H_2Me_3-2,4,6$)
MO	molecular orbital
nacnac	β -diketiminate
naph.	naphthalene
NHC	N-heterocyclic carbene
NMR	nuclear magnetic resonance
NR	neutralization-reionization
Ph	phenyl (C_6H_5)
Ph'	diisopropylphenyl (C ₆ H ₃ <i>i</i> Pr ₂ -2,6)
ppm	parts per million

P₄ Activation by Main Group Elements and Compounds

Pr	<i>n</i> -propyl (C_3H_7)
<i>i</i> Pr	isopropyl (C ₃ H ₇)
SCF	self-consistent field
THF	tetrahydrofuran
Q	chalcogen
XPD	X-ray powder diffraction

6. Acknowledgments

This work is supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie. The authors also thank the COST Action CM0802 (*PhosSciNet*) for general support.

7. References

- (1) Corbridge, D. E. Phosphorus 2000; Elsevier: Amsterdam, 2000.
- (2) (a) Dapporto, S.; Midollini, S.; Sacconi, L. Angew. Chem., Int. Ed. Engl. 1979, 18, 469. (b) Di Vaira, M.; Ghilardi, C. A.; Midollini, S.; Sacconi, L. J. Am. Chem. Soc. 1978, 100, 2550.
- (3) Ginsberg, A. P.; Lindsell, W. E. J. Am. Chem. Soc. 1971, 93, 2082.
 (4) (a) Scherer, O. J.; Sitzmann, H.; Wolmershäuser, G. Angew. Chem.,
- (4) (a) Scherer, O. J.; Sitzmann, H.; Wolmershäuser, G. Angew. Chem., Int. Ed. Engl. 1985, 24, 351. (b) Scherer, O. J.; Brück, T. Angew. Chem., Int. Ed. Engl. 1987, 26, 59.
- (5) (a) Scheer, M.; Hermann, E. Z. Chem. **1990**, 30, 41. (b) Scherer, O. J. Angew. Chem., Int. Ed. Engl. **1990**, 29, 1104. (c) Scherer, O. J. Acc. Chem. Res. **1999**, 32, 751. (d) Scherer, O. J. Chem. Unserer Zeit **2000**, 34, 374. (e) Ehses, M.; Romerosa, A.; Peruzzini, M. Top. Curr. Chem. **2005**, 220, 107. (f) Peruzzini, M.; Gonsalvi, L.; Romerosa, D. Chem. Soc. Rev. **2005**, 34, 1038.
- (6) For details cf.: (a) Scheer, M.; Troitzsch, C.; Hilfert, L.; Dargatz, M.; Kleinpeter, E.; Jones, P. G.; Sieler, J. Chem. Ber. 1995, 128, 251. (b) Scheer, M.; Becker, U.; Chisholm, M. H.; Huffman, J. C.; Lemoigno, F.; Eisenstein, O. Inorg. Chem. 1995, 34, 3117. (c) Scheer, M.; Schuster, K.; Becker, U. Phosphorus, Sulfur Silicon 1996, 109–110, 141. (d) Scheer, M.; Becker, U. Chem. Ber. 1996, 129, 1307. (e) Scheer, M.; Becker, U. J. Organomet. Chem. 1997, 545–546, 451. (f) Scheer, M.; Becker, U.; Magull, J. Polyhedron 1998, 17, 1983.
- (7) Cossairt, B. M.; Piro, N. A.; Cummins, C. C. Chem. Rev. 2010, http:// dx.doi.org/10.1021/cr9003709 (in this issue). Caporali, M.; Gonsalvi, L.; Rossin, A.; Peruzzini, M. Chem. Rev. 2010, http://dx.doi.org/ 10.1021/cr900349u (in this issue).
- (8) Lynam, J. M. Angew. Chem., Int. Ed. 2008, 47, 831. Also cf. Krossing, I. In Molecular Clusters of the Main Group Elements; Driess, M., Nöth, H., Eds.; Wiley-VCH, Verlag GmbH & Co KGaA: Weinheim, Germany, 2004; pp 204–229.
- (9) (a) Maier, L. Fortschr. Chem. Forsch. 1971, 19, 1. (b) Riesel, L. Z. Chem. 1979, 19, 161. (c) Lehmann, H. A.; Grossmann, G. Pure Appl. Chem. 1980, 52, 905. (d) Schmidpeter, A. Nova Acta Leopoldina 1985, 59, 69. (e) Riesel, L. Mitteilungsblatt—Chem. 1987, 34, 74. (f) Milyukov, V. A.; Budnikova, Yu. H.; Sinyashin, O. G. Russ. Chem. Rev. 2005, 74, 781. (g) Trofimov, B. A.; Gusarova, N. K. Mendeleev Commun. 2009, 19, 295.
- (10) H. Brand discovered phosphorus in 1669. For historical aspects: cf.
 (a) Weeks, M. E. J. Chem. Educ. 1932, 9, 11. (b) Krafft, F. Angew. Chem., Int. Ed. Engl. 1969, 8, 660.
- (11) (a) Hultgren, R.; Gingrich, N. S.; Warren, B. E. J. Chem. Phys. 1935, 3, 351. (b) Brown, A.; Rundqvist, S. Acta Crystallogr. 1965, 19, 684. (c) Lange, S.; Schmidt, P.; Nilges, T. Inorg. Chem. 2007, 46, 4028.
- (12) (a) Jamieson, J. C. Science **1963**, *139*, 1291. (b) Kikegawa, T.; Iwasaki, H. Acta Crystallogr., Sect. B **1983**, *39*, 158. (c) Marques, M.; Ackland, G. J.; Lundegaard, L. F.; Falconi, S.; Hejny, C.; McMahon, M. I.; Contreras-Garcia, J.; Hanfland, M. Phys. Rev. B **2008**, *78*, 054120. (d) Ahuja, R. Phys. Status Solidi B: Basic Res. **2003**, 235, 282.
- (13) (a) Simon, A.; Bormann, H.; Horakh, J. Chem. Ber./Recl. 1997, 130, 1235. (b) Simon, A.; Borrmann, H.; Craubner, H. Phosphorus Sulfur 1987, 30, 507. (c) Okudera, H.; Dinnebier, R. E.; Simon, A. Z. Kristallogr. 2005, 220, 259.
- (14) For details, cf.: Pfitzner, A. Angew. Chem., Int. Ed. 2006, 45, 699.
- (15) Maxwell, L. R.; Hendrichs, S. B.; Mosley, V. J. Chem. Phys. 1935, 3, 699.
- (16) Brassington, N. J.; Edwards, H. G. M.; Long, D. A. J. Raman Spectrosc. **1981**, *11*, 346. See also: Östermark, H.; Wallin, S.; More, N.; Launila, O. J. Chem. Phys. **2003**, *119*, 5918.
- (17) Häser, M.; Treutler, O. J. Chem. Phys. 1995, 102, 3703.
- (18) For gaseous P₂, a value of 1.893 Å was determined; cf.: Douglas, A. E.; Rao, K. S. *Can. J. Phys.* **1958**, *36*, 565.

- (19) (a) Roth, W. L.; DeWitt, T. W.; Smith, A. J. J. Am. Chem. Soc. 1947, 69, 2881. (b) Rubenstein, M.; Ryan, F. M. J. Electrochem. Soc. 1966, 113, 1063. (c) Nechaeva, V. V.; Talanov, N. D.; Soklakov, A. I. Russ. J. Inorg. Chem. 1979, 24, 1097.
- (20) (a) Thurn, H.; Krebs, H. Angew. Chem., Int. Ed. Engl. 1966, 5, 1047.
 (b) Thurn, H.; Krebs, H. Acta Crystallogr., Sect. B 1969, 25, 125.
- (21) Hittorf, W. Ann. Phys. Chem. 1865, 126, 193.
- (22) Ruck, M.; Hoppe, D.; Wahl, B.; Simon, P.; Wang, Y.; Seifert, G. Angew. Chem., Int. Ed. 2005, 44, 7616.
- (23) Böcker, S.; Häser, M. Z. Anorg. Allg. Chem. 1995, 621, 258. The advantage of the nomenclature is to enable the user to describe extended polymeric structures by small fragments or cages as repeating units. The notation P2[P8 stands for a phosphorus cluster in which a P₂ unit is connected with a P₈ unit to a larger structural cluster by formal [2 + 3] cycloaddition; in P8]P2[P9, a P₈ and a P₉ framework are bridged by a P₂ group.
- (24) Möller, M. H.; Jeitschko, W. J. J. Solid State Chem. 1986, 65, 178.
- (25) (a) Pfitzner, A.; Freudenthaler, E. Z. Naturforsch. 1997, 52B, 199.
 (b) Pfitzner, A.; Freudenthaler, E. Angew. Chem., Int. Ed. Engl. 1995, 34, 1647.
- (26) Pfitzner, A.; Bräu, M. F.; Zweck, J.; Brunklaus, G.; Eckert, H. Angew. Chem., Int. Ed. 2004, 43, 4228.
- (27) Winchester, R. L.; Whitby, M.; Shaffer, M. S. P. Angew. Chem., Int. Ed. 2009, 48, 3616.
- (28) Trofimov, B. A.; Malysheva, S. F.; Gusarova, N. K.; Belogorlova, N. A.; Kuimov, V. A.; Sukhov, B. G.; Tarasova, N. P.; Smetannikov, Yu. V.; Vilesov, A. S.; Sinegovskaya, L. M.; Arsent'ev, K. Yu.; Likhoshvai, E. V. Dokl. Chem. **2009**, 421, 153.
- (29) Schröder, D.; Schwarz, H.; Wulf, M.; Sievers, H.; Jutzi, P.; Reiher, M. Angew. Chem., Int. Ed. 1999, 38, 3513.
- (30) Hartl, H. Angew. Chem., Int. Ed. Engl. 1995, 34, 2637.
- (31) Cossairt, B. M.; Cummins, C. C. J. Am. Chem. Soc. 2009, 131, 15501.
 (32) (a) Glukhovtsev, M. N.; Dransfeld, A.; Schleyer, P. v. R. J. Phys. Chem. 1995, 100, 13447. (b) Jones, O. R.; Ganteför, G.; Hunsiker, S.; Pieperhoff, P. J. Chem. Phys. 1995, 103, 9549. (c) Seifert, G.; Jones, R. O. J. Chem. Phys. 1992, 96, 2951. (d) Jones, R. O.; Seifert,
- G. J. Chem. Phys. 1992, 96, 7564.
 (33) (a) Feng, J.-N.; Cui, M.; Huang, X. R.; Otto, P.; Gu, F. L. THEOCHEM 1998, 425, 201. (b) Liu, Z.-Y.; Huang, R.-B.; Zheng, L.-S. Z. Phys. D 1996, 38, 171, and references therein.
- (34) (a) Huang, R. B.; Li, H. D.; Lin, Z. A.; Yang, S. H. J. Phys. Chem. 1995, 99, 1418. (b) Huang, R. B.; Li, H. D.; Lin, Z. Y.; Yang, S. H. Surf. Rev. Lett. 1996, 3, 167. (c) Liu, Z. Y.; Huang, R. B.; Zheng, L. S. Z. Phys. D 1996, 38, 171. (d) Huang, R. B.; Liu, Z. Y.; Zhang, P.; Zhu, Y. B.; Lin, F. C.; Zhao, J. H.; Zhang, L. S. Chin. J. Struct. Chem. 1993, 14, 180. For corresponding theoretical calculations, cf.: Chen, M. D.; Huang, R. B.; Zheng, L. S.; Zhan, O. E.; Au, C. T. Chem. Phys. Lett. 2000, 325, 22.
- (35) (a) Baird, N. C. Can. J. Chem. 1984, 62, 341. (b) Nguyen, M. T.; Hegarty, A. F. J. Chem. Soc., Chem. Commun. 1986, 383. (c) See also: Schleyer, P. v. R.; Jiao, H.; Eikemma Hommes, N. J. R.; Malkin, V. G.; Malkina, O. L. J. Am. Chem. Soc. 1997, 119, 12669. (d) Trinquier, G.; Malrieu, J.-P.; Daudey, J.-P. Chem. Phys. Lett. 1981, 80, 552. (e) Halevi, E. A.; Bock, H.; Roth, B. Inorg. Chem. 1984, 23, 4376. (f) Schmidt, M. W.; Gordon, M. S. Inorg. Chem. 1985, 24, 4503. (g) Trinquier, G.; Daudey, J.-P.; Komiha, N. J. Am. Chem. Soc. 1985, 107, 7210. (h) Ahlrichs, R.; Brode, S.; Ehrhardt, C. J. Am. Chem. Soc. 1985, 107, 7260. (i) Jones, O. R.; Hohl, D. J. Chem. Phys. 1990, 92, 6710. (j) Janoschek, R. Chem. Ber. 1992, 125, 2687. (k) Häser, M.; Schneider, U.; Ahlrichs, R. J. Am. Chem. Soc. 1992, 114, 9551. (l) Ballone, P.; Jones, R. O. J. Chem. Phys. 1994, 100, 4941. (m) Häser, M.; Treutler, O. J. Chem. Phys. 1995, 102, 3703.
- (36) Ahlrichs, R.; Brode, S.; Erhardt, C. J. Am. Chem. Soc. 1985, 107, 7260. For recent CBS-Q calculations of P₂ and P₄, cf.: Denk, M. K.; Hezarkhani, A. Heteroat. Chem. 2005, 16, 453.
- (37) (a) Ohanessian, G.; Hiberty, P. C.; Leffour, J.-M.; Flament, J.-P.; Shaik, S. S. *Inorg. Chem.* **1988**, 27, 2219. (b) Nagase, S.; Ito, K. *Chem. Phys. Lett.* **1986**, *126*, 43.
- (38) Janoschek, R. Chem. Ber. 1989, 122, 2121.
- (39) (a) Baudler, M.; Akpapoglou, S.; Ouzounis, D.; Wasgestian, F.; Meinigke, G.; Budzikiewicz, H.; Münster, H. Angew. Chem., Int. Ed. 1988, 27, 280. (b) Baudler, M.; Etzbach, T. Chem. Ber. 1991, 124, 1159. (c) Milyukov, V. A.; Kataev, A. V.; Sinyashin, O. G.; Hey-Hawkins, E.-M. Russ. Chem. Bull., Int. Ed. 2006, 55, 1297. (d) Baudler, M.; Ouzounis, D. Z. Naturforsch. B 1989, 44, 381.
- (40) (a) Scherer, O. J.; Schwalb, J.; Swarowsky, H.; Wolmershäuser, G.; Kaim, W.; Gross, R. Chem. Ber. 1988, 443. (b) Scherer, O. J.; Sitzmann, H.; Wolmershäuser, G. Angew. Chem., Int. Ed. 1985, 24, 351. (c) Scherer, O. J. Comm. Inorg. Chem. 1987, 6, 1. (d) Scherer, O. J.; Sitzmann, H.; Wolmershäuser, G. J. Organomet. Chem. 1984, 268, C9. (e) Bai, J.; Leiner, E.; Scheer, M. Angew. Chem., Int. Ed. 2002, 41, 783. (f) Scherer, M.; Gregoriades, L.; Bai, J.; Sierka, M.;

Brunklaus, G.; Eckert, H. *Chem.–Eur. J.* **2005**, *11*, 2163. (g) Dielmann, F.; Merkle, R.; Heinl, S.; Scheer, M. Z. *Naturforsch.* **2009**, 69b, 3.

- (41) (a) Hiberty, P. C.; Volatron, F. *Heteroat. Chem.* 2007, *18*, 129. (b) Engelberts, J. J.; Havenith, R. W. A.; van Lenthe, J. H.; Jenneskens, L. W.; Fowler, P. W. *Inorg. Chem.* 2005, *44*, 5266. (c) Sakai, S. *J. Phys. Chem. A* 2002, *106*, 10370. (d) Pierrefixe, S. C. A. H.; Bickelhaupt, F. M. *Aust. J. Chem.* 2008, *61*, 209.
- (42) (a) Baudler, M. Angew. Chem., Int. Ed. Engl. 1982, 21, 492. (b) Häser, M. J. Am. Chem. Soc. 1994, 116, 6925.
- (43) P₆ is 100.5 kJ mol⁻¹ higher in energy as P₆ prismane (SCF/6-31G*), cf.: Janoschek, R. *Chem. Ber.* **1989**, *122*, 2121.
- (44) Häser, M.; Schneider, U.; Ahlrichs, R. J. Am. Chem. Soc. 1992, 114, 9551.
- (45) (a) Trinquier, G.; Daudey, J.-P.; Komiha, N. J. Am. Chem. Soc. 1985, 107, 7210. (b) Jones, R. O.; Hohl, D. J. Chem. Phys. 1990, 92, 6710.
- (46) Gimarc, B. M.; Warren, D. S. Inorg. Chem. 1993, 32, 1850.
- (47) Denk, M. R.; Hezarkhani, A. Heteroat. Chem. 2005, 16, 453.
- (48) Karttunen, A. J.; Linnolahti, M.; Pakkanen, T. A. Chem.-Eur. J. 2007, 13, 5232.
- (49) (a) Jones, R. D.; Holl, D. J. J. Chem. Phys. 1990, 92, 6710. (b) Schoeller, W. W.; Staemmler, V.; Rademacher, P.; Niecke, E. Inorg. Chem. 1986, 25, 4382.
- (50) Tsirelson, V. G.; Tarasova, M. F.; Smetannikov, Yu V. *Heteroat. Chem.* 2006, 17, 572.
- (51) Hirsch, A.; Chen, Z.; Jiao, H. Angew. Chem., Int. Ed. 2001, 40, 2834.
- (52) (a) Bader, R. F. W. Atoms in Molecules. A Quantum Theory; Clarendon Press: Oxford, U.K., 1990. (b) Tsirelson, V. G.; Ozerov, R. P. Electron Density and Bonding in Crystals; Institute of Physics Publishing: Bristol, U.K., 1996. (c) Tsirelson, V. G. Chemical Bond and Thermal Agitation of Atoms in the Crystals; VINITI: Moscow, 1993.
- (53) Tarasova, N. P.; Smetannikov, Yu. V.; Vilesov, A. S.; Shevchenko, V. P.; Byakov, V. M. Dokl. Phys. Chem. 2008, 423, 335.
- (54) Petrov, K. A.; Smirnov, V. V.; Emel'yanov, V. I. Zh. Obshch. Khim. 1968, 38, 122.
- (55) Fluck, E.; Pavlidou, C. M. E.; Janoschek, R. Phosphorus Sulfur 1979, 6, 469.
- (56) Abboud, J.-L. M.; Herreros, M.; Notario, R.; Essefar, M.; Mó, O.; Yáñez, M. J. Am. Chem. Soc. **1996**, 118, 1126. For P₄Li⁺, cf.: Abboud, J.-L.; Alkorta, M. I.; Davalos, J. Z.; Gal, J.-F.; Herreros, M.; Maria, P.-C.; Mo, O.; Molina, M. T.; Notario, R.; Yanez, M. J. Am. Chem. Soc. **2000**, 122, 4451.
- (57) Cf. comment in quotation [52] in: Schoeller, W. W. Phys. Chem. Chem. Phys. 2009, 11, 5273.
- (58) Riedel, R.; Hausen, H.-D.; Fluck, E. Angew. Chem., Int. Ed. Engl. 1985, 24, 1056.
- (59) Knoll, F.; Bergerhoff, G. Monatsh. Chem. 1966, 97, 808.
- (60) Baudler, M.; Adamek, C.; Opiela, S.; Budzikiewicz, H.; Ouzounis, D. Angew. Chem., Int. Ed. Engl. 1988, 27, 1059.
- (61) (a) Auger, V. Compt. Rend. 1904, 139, 639. (b) Michaelis, A.; Pitch, M. Chem. Ber. 1899, 32, 337. (c) Michaelis, A.; Pitch, M. Liebigs Ann. 1900, 310, 45. (d) Michaelis, A.; Chapman, D. L.; Lindbury, A. F. J. Chem. Soc. 1899, 75, 973. (e) Michaelis, A.; von Arend, K. Liebig Ann. 1901, 314, 259. (f) Michaelis, A.; Burgess, C. H.; Chapman, D. L. J. Chem. Soc. 1901, 79, 1235.
- (62) (a) Rauhut, M. M.; Bernheimer, R.; Semsel, A. M. J. Org. Chem. 1963, 28, 478.
- (63) (a) Malysheva, S.; Sukhov, B.; Gusarova, N.; Shaikhudinova, S.; Kazantseva, T. y.; Belogorlova, N. y.; Kuimov, V.; Trofimov, B. *Phosphorus, Sulfur, Silicon Relat. Elem.* **2003**, *178*, 425. (b) Gusarova, N. K.; Arbuzova, S. N.; Shaikhudinova, S. I.; Kazantseva, T. I.; Reutskaya, A. M.; Ivanova, N. I.; Papernaya, L.; Trofimov, B. A. *Phosphorus, Sulfur, Silicon Relat. Elem.* **2001**, *175*, 163.
- (64) (a) Trofimov, B.; Gusarova, N.; Malysheva, S.; Kuimov, V.; Sukhov, B.; Shaikhudinova, S.; Tarasova, N.; Smetannikov, Y.; Sinyashin, O.; Budnikova, Y.; Kazantseva, T.; Smirnov, V. *Russ. J. Gen. Chem.* 2005, *75*, 1367. (b) Gusarova, N. K.; Shaikhudinova, S. I.; Kazantseva, T. I.; Sukhov, B. G.; Dmitriev, V. I.; Sinegovskaya, L. M.; Smetannikov, Y. V.; Tarasova, N. P.; Trofimov, B. A. *Chem. Heterocycl. Compd.* 2001, *37*, 576. (c) Gusarova, N. K.; Sukhov, B. G.; Malysheva, S. F.; Kazantseva, T. I.; Smetannikov, Y. V.; Tarasova, N. P.; Trofimov, B. A. *Russ. J. Gen. Chem.* 2001, *71*, 721.
- (65) (a) Maier, L. Angew. Chem., Int. Ed. Engl. 1965, 4, 527. (b) Maier, L. Helv. Chim. Acta 1967, 50, 1723. (c) Maier, L. Helv. Chim. Acta 1968, 51, 1608. (d) Badeeva, E. K.; Krokhina, S. S.; Ivanov, B. E. Russ. J. Gen. Chem. 2003, 73, 1376.
- (66) Berthaud, J. Compt. Rend. 1906, 143, 1166.
- (67) (a) Krebs, H. Z. Anorg. Allg. Chem. 1951, 266, 175. (b) Street, E. H., Jr.; Gardner, D. M.; Evers, E. C. J. Am. Chem. Soc. 1958, 80, 1819.
- (68) (a) Jacobs, H.; Kirchgässner, R. Z. Anorg. Allg. Chem. 1990, 581, 125. (b) Golinski, F.; Jacobs, H. Z. Anorg. Allg. Chem. 1994, 620, 965.

- (69) Rauhut, M. M.; Semsel, A. M. J. Org. Chem. 1963, 28, 471.
- (70) (a) Rauhut, M. M.; Semsel, A. M. J. Org. Chem. 1963, 28, 473. (b)
 Cowley, A. H.; Pinnel, R. P. Inorg. Chem. 1966, 5, 1463. (c) Rauhut,
 M. M.; Semsel, A. M. J. Org. Chem. 1962, 28, 473.
- (71) Fritz, G.; Härer, J. Z. Anorg. Allg. Chem. 1983, 504, 23.
- (72) (a) Trofimov, B.; Brandsma, L.; Arbuzova, S.; Gusarova, N. *Russ. Chem. Bull.* **1997**, *46*, 849. (b) Trofimov, B. A.; Brandsma, L.; Arbuzova, S. N.; Gusarova, N. K. *Russ. J. Gen. Chem.* **1997**, *67*, 322. (c) Arbuzova, S. N.; Brandsma, L.; Gusarova, N. K.; Nikitin, M. V.; Trofimov, B. A. *Mendeleev Commun.* **2000**, *10*, 66.
- (73) Charrier, C.; Maigrot, N.; Ricard, L.; Le Floch, P.; Mathey, F. Angew. Chem., Int. Ed. Engl. **1996**, *35*, 2133.
- (74) (a) Schmidpeter, A.; Burget, G.; Zwaschka, F.; Sheldrick, W. S. Z. Anorg. Allg. Chem. 1985, 527, 17. (b) Schmidpeter, A.; Burget, G. Inorg. Synth. 1989, 25, 126.
- (75) Schmidpeter, A.; Burget, G. Phosphorus, Sulfur Relat. Elem. 1985, 22, 323.
- (76) (a) Schmidpeter, A.; Burget, G.; von Schnering, H.-G.; Weber, D. Angew. Chem., Int. Ed. Engl. 1984, 23, 816. (b) Schmidpeter, A.; Lochschmidt, S.; Burget, G.; Sheldrick, W. S. Phosphorus, Sulfur Relat. Elem. 1983, 18, 23.
- (77) (a) Fisher, K.; Dance, I.; Willet, G. Eur. Mass Spectrom. 1997, 3, 331. (b) Fisher, K. J.; Dance, I. G.; Willett, G. D. Eur. Mass Spectrom. 1996, 2, 369.
- (78) Riesel, L.; Kant, M. Z. Anorg. Allg. Chem. 1985, 531, 73.
- (79) (a) Brown, C.; Hudson, R. F.; Wartew, G. A.; Coates, H. Phosphorus, Sulfur Silicon Relat. Elem. 1979, 6, 481. (b) Brown, C.; Hudson, R. F.; Wartew, G. A.; Coates, H. J. Chem. Soc., Chem. Commun. 1978, 7. (c) Brandsma, L.; van Doom, J. A.; de Lang, R.-J.; Gusarova, N. K.; Trofimov, B. A. Mendeleev Commun. 1995, 5, 14. (d) Riesel, L. Z. Chem. 1979, 19, 161, and references cited therein.
- (80) (a) Badeeva, E. K.; Batyeva, E. S.; Gubaidullin, A. T.; Litvinov, I. A.; Sinyashin, O. G. *Russ. J. Gen. Chem.* 2005, *75*, 835. (b) Brown, C.; Hudson, R. F.; Wartew, G. A. *Phosphorus, Sulfur, Silicon Relat. Elem.* 1978, *5*, 67. (c) Brown, C.; Hudson, R. F.; Wartew, G. A. *Phosphorus, Sulfur, Silicon Relat. Elem.* 1978, *5*, 121. (d) Brown, C.; Hudson, R. F.; Wartew, G. A. *J. Chem. Soc., Perkin Trans. 1* 1979, 1799. (e) Brown, C.; Hudson, R. F.; Wartew, G. A. *Inorg. Synth.* 1983, *22*, 131.
- (81) Schmidpeter, A.; Burget, G.; Sheldrick, W. S. Chem. Ber. 1985, 118, 3849.
- (82) (a) Hönle, W.; von Schneering, G. H. *Phosphorus, Sulfur Silicon Relat. Elem.* **1987**, *30*, 775. (b) von Schnering, H. G.; Hönle, W. Chem. Rev. **1988**, 88, 243.
- (83) Chan, W. T. K.; García, F.; Hopkins, A. D.; Martin, L. C.; McPartlin, M.; Wright, D. S. Angew. Chem., Int. Ed. 2007, 46, 3084.
- (84) (a) Piro, N. A.; Cummins, C. C. J. Am. Chem. Soc. 2009, 131, 8764.
 (b) Baudler, M.; de Riese-Meyer, L. Z. Naturforsch., B 1996, 51, 101. (c) Fritz, G.; Vaahs, T.; Jarmer, M. Z. Anorg. Allg. Chem. 1990, 589, 12. (d) Fritz, G.; Stoll, K. Z. Anorg. Allg. Chem. 1986, 538, 113. (e) Fritz, G.; Haerer, J. Z. Anorg. Allg. Chem. 1983, 500, 14.
- (85) (a) Wiberg, N.; Wörner, A.; Karaghiosoff, K.; Fenske, D. Chem. Ber. 1997, 130, 135. (b) Lerner, H.-W.; Margraf, G.; Kaufmann, L.; Bats, J. W.; Bolte, M.; Wagner, M. Eur. J. Inorg. Chem. 2005, 2005, 1932.
 (c) Lerner, H.-W.; Bolte, M.; Karaghiosoff, K.; Wagner, M. Organometallics 2004, 23, 6073. (d) Lorbach, A.; Nadj, A.; Tüllmann, S.; Dornhaus, F.; Schödel, F.; Sänger, I.; Margraf, G.; Bats, J. W.; Bolte, M.; Holthausen, M. C.; Wagner, M.; Lerner, H.-W. Inorg. Chem. 2009, 48, 1005.
- (86) Wiberg, N.; Wörner, A.; Lerner, H.-W.; Karaghiosoff, K.; Nöth, H. Z. Naturforsch., B 1998, 53, 1004.
- (87) Lerner, H.-W. Coord. Chem. Rev. 2005, 249, 781.
- (88) Lerner, H.-W.; Wagner, M.; Bolte, M. Chem. Commun. 2003, 990.
- (89) (a) Budnikova, Y. H.; Yakhvarov, D. G.; Sinyashin, O. G. J. Organomet. Chem. 2005, 690, 2416, and references cited therein.
 (b) Kargin, Y. M.; Budnikova, Y. H.; Martynov, B. I.; Turygin, V. V.; Tomilov, A. P. J. Electroanal. Chem. 2001, 507, 157. (c) Budnikova, Y.; Tazeev, D.; Gryaznova, T.; Sinyashin, O. Russ. J. Electrochem. 2006, 42, 1127. (d) Budnikova, Y. H.; Krasnov, S. A.; Graznova, T. V.; Tomilov, A. P.; Turigin, V. V.; Magdeev, I. M.; Sinyashin, O. G. Phosphorus, Sulfur, Silicon Relat. Elem. 2008, 183, 513. (e) Budnikova, Y. H.; Kafiyatullina, A. G.; Sinyashin, O. G.; Abdreimova, R. R. Russ. Chem. Bull. 2003, 52, 929. (f) Budnikova, Y. H.; Kargin, Y. M.; Sinyashin, O. G. Phosphorus, Sulfur Silicon Relat. Elem. 1999, 144–146, 565. (g) Turygin, V. V.; Igumnov, M. S.; Tomilov, A. P. Russ. J. Electrochem. 1999, 35, 306. (i) Romakhin, A. S.; Nikitin, E. V. Russ. J. Gen. Chem. 1998, 68, 1023. (j) Fritz, H. P.; Huber, O. S. Z. Naturforsch. 1980, B35, 530.
- (90) Evers, E. C. J. Am. Chem. Soc. 1951, 73, 2038.
- (91) Korber, N.; Aschenbrenner, J. J. Chem. Soc., Dalton Trans. 2001, 1165.

P₄ Activation by Main Group Elements and Compounds

- (92) Kraus, F.; Aschenbrenner, J. C.; Klamroth, T.; Korber, N. Inorg. Chem. 2009, 48, 1911.
- (93) Baudler, M.; Duester, D. Z. Naturforsch. 1987, B42, 330.
- (94) Baudler, M. Angew. Chem., Int. Ed. Engl. 1987, 26, 419.
- (95) Kraus, F.; Aschenbrenner, J. C.; Korber, N. Angew. Chem., Int. Ed. 2003, 42, 4030.
- (96) Hanauer, T.; Aschenbrenner, J. C.; Korber, N. Inorg. Chem. 2006, 45, 6723.
- (97) Lerner, H.-W.; Bolte, M. Acta Crystallogr. 2007, E63, m1013.
- (98) (a) Peterson, D. J.; Logan, T. J. J. Inorg. Nucl. Chem. 1966, 28, 53. (b) Cahours, A. Ann. 1962, 122, 329.
- (99) (a) Becker, G.; Hölderich, W. Chem. Ber. 1975, 108, 2484. (b) Karsch, H. H.; Bienlein, F.; Rupprich, T.; Uhlig, F.; Herrmann, E.; Scheer, M. Synth. Methods Organomet. Inorg. Chem. 1996, 3, 58. (100) Fritz, G.; Hölderich, W. Naturwissenschaften 1975, 62, 573
- (101) Siegl, H.; Krumlacher, W.; Hassler, K. Monatsh. Chem. 1999, 130,
- 139 (102) Fritz, G.; Uhlmann, M. R. Z. Anorg. Allg. Chem. 1978, 440, 168.
- (103) Fritz, G.; Reuter, J. Z. Anorg. Allg. Chem. 1989, 578, 27 (104) Ellermann, J.; Demuth, A. A. M. Monatsh. Chem. 1987, 118, 183.
- (105) Baudler, M.; Duester, D. Z. Naturforsch. 1987, B42, 335.
- (106) von Schnering, H. G.; Manriquez, V.; Hönle, W. Angew. Chem., Int. Ed. Engl. 1981, 20, 594.
- (107) Baudler, M.; Exner, O. Chem. Ber. 1983, 116, 1268.
- (108) Fritz, G.; Härer, J.; Stoll, K.; Vaahs, T. Phosphorus, Sulfur, Silicon Relat. Elem. 1983, 18, 65.
- (109) Baudler, M.; Faber, W. Chem. Ber. 1980, 113, 3394.
- (110) Baudler, M.; Düster, D.; Germeshausen, J. Z. Anorg. Allg. Chem. 1986, 534, 19.
- (111) Baudler, M.; Glinka, K. Inorg. Synth. 1990, 27, 227.
- (112) Baudler, M.; Düster, D.; Langerbeins, K.; Germeshausen, J. Angew. Chem., Int. Ed. Engl. 1984, 23, 317.
- (113) Baudler, M.; Düster, D.; Ouzounis, D. Z. Anorg. Allg. Chem. 1987, 544.87.
- (114) Baudler, M.; Hahn, J. Z. Naturforsch. 1990, 45, 1139.
- (115) Baudler, M.; Becher, R.; Germeshausen, J. Chem. Ber. 1986, 119, 2510.
- (116) Baudler, M.; Heumüller, R.; Düster, D.; Germeshausen, J.; Hahn, J. Z. Anorg. Allg. Chem. 1984, 518, 7.
- (117) Guerin, F.; Richeson, D. Inorg. Chem. 1995, 34, 2793.
- (118) Baudler, M.; Glinka, K. Chem. Rev. 2002, 93, 1623.
- (119) Baudler, M.; Schnalke, M.; Ch, W. Z. Anorg. Allg. Chem. 1990, 585,
- (120) Baudler, M.; Schnalke, M. Z. Anorg. Allg. Chem. 1990, 585, 18.
- (121) Baudler, M.; Jachow, H.; Germeshausen, J. Z. Anorg. Allg. Chem. 1987, 553, 15.
- (122) Baudler, M.; Jachow, H.; Floruss, A.; Hasenbach, J. Chem. Ber. 1991, 124, 1153.
- (123) Baudler, M.; Aktalay, Y.; Arndt, V.; Tebbe, K.-F.; Fehér, M. Angew. Chem., Int. Ed. Engl. 1983, 22, 1002.
- (124) Baudler, M.; Jachow, H.; Tebbe, K. F. Z. Anorg. Allg. Chem. 1991, 593, 9.
- (125) (a) Baudler, M.; Jachow, H.; Lieser, B.; Tebbe, K.-F.; Fehér, M. Angew. Chem., Int. Ed. Engl. 1989, 28, 1231. (b) Baudler, M.; Jachow, H. Z. Anorg. Allg. Chem. 1990, 580, 27.
- (126) Baudler, M.; Hasenbach, J.; Jachow, H. Z. Anorg. Allg. Chem. 1994, 620, 2021.
- (127) Baudler, M.; Oehlert, W.; Kmieciak, A.; Floruss, A. Z. Anorg. Allg. Chem. 1992, 611, 43.
- (128) Baudler, M.; Jachow, H.; Oehlert, W.; Kmieciak, A.; Floruss, A. Z. Anorg. Allg. Chem. 1992, 616, 19.
- (129) (a) Baudler, M.; Arndt, V. Z. Naturforsch. 1984, B39, 275. (b) Baudler, M.; Schlitte, S.; Hasenbach, J. Z. Anorg. Allg. Chem. 1988, 560.7.
- (130) Baudler, M.; Hahn, J.; Arndt, V.; Koll, B.; Kazmierczak, K.; Daerr, E. Z. Anorg. Allg. Chem. 1986, 538, 7.
- (131) Dohmeier, C.; Schnöckel, H.; Robl, C.; Schneider, U.; Ahlrichs, R. Angew. Chem., Int. Ed. Engl. 1994, 33, 199.
- (132) Peng, Y.; Fan, H.; Zhu, H.; Roesky, H. W.; Magull, J.; Hughes, C. H. Angew. Chem., Int. Ed. 2004, 43, 3443.
- (133) Uhl, W.; Beuter, M. Chem. Commun. 1999, 771.
- (134) Power, M. B.; Barron, A. R. Angew. Chem., Int. Ed. Engl. 1991, 30, 1353
- (135) (a) Scherer, O. J.; Swarowsky, M.; Wolmershäuser, G. Angew. Chem., Int. Ed. Engl. 1988, 27, 694. (b) Scherer, O. J.; Swarowsky, M.; Wolmershäuser, G. Organometallics 1989, 8, 841. (c) Yakhvarov, D.; Barbaro, P.; Gonsalvi, L.; Carpio, S. M.; Midollini, S.; Orlandini, A.; Peruzzini, M.; Sinyashin, O.; Zanobini, F. Angew. Chem., Int. Ed. 2006, 45, 4182. (d) Scheer, M.; Troitzsch, C.; Jones, P. G. Angew. Chem., Int. Ed. Engl. 1992, 31, 1377. (e) Scheer, M.; Becker, U.; Huffman, J. C.; Chisholm, M. H. J. Organomet. Chem. 1993, 461, C1.

- (136) Köppe, R.; Steiner, J.; Schnöckel, H. Z. Anorg. Allg. Chem. 2003, 629, 2168.
- (137) Gao, S.; Lun, J.; Chen, N.; Zhano, Y.; Xie, Y. Chem. Commun. 2002, 3064
- (138) Yan, P.; Xie, Y.; Wang, W.; Liu, F.; Qian, Y. J. Mater. Chem. 1999, 9, 1831.
- (139) Fox, A. R.; Wright, R. J.; Rivard, E.; Power, P. P. Angew. Chem., Int. Ed. 2005, 44, 7729.
- (140) Deacon, G. B.; Parrott, J. C. J. Organomet. Chem. 1970, 22, 287. (141) Damrauer, R.; Pusede, S. E.; Staton, G. M. Organometallics 2008,
- 27, 3399. (142) Back, O.; Kuchenbeiser, G.; Donnadieu, B.; Bertrand, G. Angew.
- Chem., Int. Ed. 2009, 48, 5530. (143) Masuda, J. D.; Schoeller, W. W.; Donnadieu, B.; Bertrand, G. Angew.
- Chem., Int. Ed. 2007, 46, 7052. (144) Masuda, J. D.; Schoeller, W. W.; Donnadieu, B.; Bertrand, G. J. Am.
- Chem. Soc. 2007, 129, 14180.
- (145) Romanenko, V. D.; Kachkovskaya, L. S.; Markovskii, L. N. Zh. Obshch. Khim. 1985, 55, 2140.
- (146) Wang, Y. Z.; Xie, Y. M.; Wei, P. R.; King, R. B.; Schaefer, H. F.; Schleyer, P. v. R. J. Am. Chem. Soc. 2008, 130, 14970.
- (147) Haaf, M.; Schmiedl, T.; Schmedake, T. A.; Powell, D. R.; Millevolte, A. J.; Denk, M.; West, R. J. Am. Chem. Soc. 1998, 120, 12714.
- (148) Xiong, Y.; Yao, S.; Brym, M.; Driess, M. Angew. Chem., Int. Ed. 2007, 46, 4511.
- (149) Damrauer, R.; Pusede, S. E. Organometallics 2009, 28, 1289.
- (150) Schoeller, W. W. Phys. Chem. Chem. Phys. 2009, 11, 5273.
- (151) Xiong, Y.; Yao, S.; Bill, E.; Driess, M. Inorg. Chem. 2009, 48, 7522.
- (152) (a) Driess, M.; Fanta, A. D.; Powell, D.; West, R. Angew. Chem., Int. Ed. Engl. 1989, 28, 1038. (b) Fanta, A. D.; Tan, R. P.; Comerlato, N. M.; Driess, M.; Powell, D. R.; West, R. Inorg. Chim. Acta 1992, 198-200, 733. (c) Driess, M.; Pritzkow, H.; Reisgys, M. Chem. Ber. 1991, 124, 1923.
- (153) Driess, M. Angew. Chem., Int. Ed. Engl. 1991, 30, 1022.
- (154) (a) Schuhmann, H. Angew. Chem., Int. Ed. Engl. 1969, 8, 937. (b) Schumann, H.; Köpf, H.; Schmidt, M. Z. Anorg. Allg. Chem. 1964, 331, 200. (c) Schumann, H.; Köpf, H.; Schmidt, M. Chem. Ber. 1964, 97, 1458.
- (155) Mathiasch, B.; Dräger, M. Angew. Chem., Int. Ed. Engl. 1978, 17, 767
- (156) Dräger, M.; Mathiasch, B. Angew. Chem., Int. Ed. Engl. 1981, 20, 1029
- (157) Su, H. L.; Xie, Y.; Li, B.; Liu, X.; Qian, Y. T. J. Solid State Chem. 1999, 146, 110.
- (158) Fluck, E.; Riedel, R.; Fischer, P. Phosphorus Sulfur 1987, 33, 115.
- (159) Mal, P.; Breiner, B.; Rissanen, K.; Nitschke, J. R. Science 2009, 324, 1697.
- (160) Douthwaite, R. E.; Green, M. L. H.; Heyes, S. J.; Rosseinsky, M. J.; Turner, J. F. C. J. Chem. Soc., Chem. Commun. 1994, 1367.
- (161) Westerhausen, M.; Kneifel, A. N.; Mayer, P. Z. Anorg. Allg. Chem. 2006, 632, 634.
- (162) Bezombes, J.-P.; Hitchcock, P. B.; Lappert, M. F.; Nycz, J. E. Dalton Trans. 2004, 499.
- (163) Krossing, I.; Raabe, I. Angew. Chem., Int. Ed. 2001, 40, 4406.
- (164) Gonsior, M.; Krossing, I.; Müller, L.; Raabe, I.; Jansen, M.; van Wüllen, L. Chem.-Eur. J. 2002, 8, 4475
- (165) Dyker, C. A.; Burford, N. Chem.-Asian J. 2008, 3, 28, and references therein.
- Weigand, J. J.; Holthausen, M.; Fröhlich, R. Angew. Chem., Int. Ed. (166)2009, 48, 295.
- (167) Holthausen, M. H.; Weigand, J. J. J. Am. Chem. Soc. 2009, 131, 14210.
- (168) Bell, I. S.; Qian, H.-B.; Hamilton, P. A.; Davies, P. B. J. Chem. Phys. 1997, 107, 8311.
- (169) Ahmad, I. K.; Hamilton, P. A. J. Am. Chem. Soc. 1996, 118, 1126.
- (170) Chang, S.-G.; Hu, K.; Wang, Y. J. Environ. Sci. 1994, 6, 1.
- (171) Andrews, L.; Mc Cluskey, M.; Mielke, Z.; Whitnall, R. J. Mol. Struct. 1990, 222, 95
- (172) Andrews, L.; Whitnall, R. J. Am. Chem. Soc. 1988, 110, 5605.
- (173) Hamilton, P. A.; Murrells, T. P. J. Phys. Chem. 1986, 90, 182.
- (174) Grossmann, G.; Ryong, C. M. Z. Chem. 1984, 24, 135.
- (175) Hu, K.; Wang, Y.; Chang, S.-G. Huanjing Kexue Xuebao 1995, 15, 199
- (176) Miao, X.; Chu, S.; Xu, X.; Hu, K. Zhongguo Huanjing Kexue 1996, 16, 373.
- (177) (a) Dorfman, Ya. A.; Aleshkova, M. M.; Polimbetova, G. S.; Levina, L. V.; Petrova, T. V.; Abdreimova, R. R.; Doroshkevich, Russ. Chem. Rev. 1993, 62, 877. (b) Dorfman, Ya. A.; Abdreimova, R. R.; Polimbetova, G. S.; Aibasova, S. M.; Akbaeva, D. N. *Kinet. Catal.* **1996**, *37*, 183. (c) Abdreimova, R. R.; Tamuliene, J.; Peruzzini, M.; Balevicius, M. L. Inorg. Chim. Acta 2000, 307, 71.
- (178) For a newer publication: Jason, M. E.; Ngo, T.; Rahman, S. Phosphorus Res. Bull. 1996, 6, 127.

- 4256 Chemical Reviews, 2010, Vol. 110, No. 7
- (179) Jason, M. E.; Ngo, T.; Rahman, S. Inorg. Chem. 1997, 36, 2633.
- (180) (a) Falius, H.; Krause, W.; Sheldrick, W. S. Angew. Chem., Int. Ed. Engl. 1981, 20, 103. (b) Falius, H.; Schliephake, A. Inorg. Synth. 1989, 25, 5.
- (181) (a) Krause, W.; Falius, H. Z. Anorg. Allg. Chem. 1983, 496, 80. (b) Falius, H.; Schliephake, A.; Schomburg, D. Z. Anorg. Allg. Chem. 1992, 611, 141. (c) Gruber, H.; Müller, U. Z. Anorg. Allg. Chem. 1997, 623, 957.
- (182) Tattershall, B. W.; Kendall, N. L. Polyhedron 1994, 13, 2629.
- (183) (a) Wu, C. J. Am. Chem. Soc. 1965, 87, 2522. (b) Milyukov, V. A.; Zverev, A. V.; Podlesnov, S. M.; Krivolapov, D. B.; Litvinov, I. A.; Gubaidullin, A. T.; Kataeva, O. N.; Ginzburg, A. G.; Sinyashin, O. G. *Eur. J. Inorg. Chem.* 2000, 225.
- (184) (a) Akbayeva, D. N.; Faisova, F. K.; Abdreimova, R. R.; Peruzzini, M. J. Mol. Catal. A: Chem. 2007, 267, 181. (b) Trofimov, B.; Timokhin, B.; Gusarova, N.; Kazantseva, M.; Golubin, A. Phosphorus, Sulfur, Silicon Relat. Elem. 2002, 177, 2385.
- (185) Abdreimova, R. R.; Akbayeva, D. N.; Polimbetova, G. S.; Caminade, A.-M.; Majorals, J.-P. *Phosphorus, Sulfur, Silicon* **2000**, *156*, 239.
- (186) Rotter, C.; Schuster, M.; Karaghiosoff, K. Inorg. Chem. 2009, 48, 7531.
- (187) Tattershall, B. W.; Kendall, N. L. Polyhedron 1994, 13, 1517.
- (188) Krossing, I. J. Chem. Soc., Dalton Trans. 2002, 5009.

CR100010E